Leetcode Compare version numbers

本文介绍了一种用于比较两个版本号大小的方法。通过解析版本号字符串并逐段对比数字来判断版本1与版本2之间的大小关系,返回相应的比较结果。文章提供了一个Java实现的例子。

Compare two version numbers version1 and version2.
If version1 > version2 return 1, if version1 < version2 return -1, otherwise return 0.

You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not “two and a half” or “half way to version three”, it is the fifth second-level revision of the second first-level revision.

Here is an example of version numbers ordering:

0.1 < 1.1 < 1.2 < 13.37


注意一下 .数目不一样的时候用0代替就好
[code]

public class Solution {
    public int compareVersion(String version1, String version2) 
    {
        int i=0, j=0;
        while(i<version1.length() || j<version2.length())
        {
            int v1=0, v2=0;
            if(i==version1.length())v1=0;
            else 
            {
                int temp=i;
                while(i<version1.length() && version1.charAt(i)!='.')i++;
                v1=Integer.parseInt(version1.substring(temp,i));
            }
            if(i<version1.length())i++;
            if(j==version2.length())v2=0;
            else
            {
                int temp=j;
                while(j<version2.length() && version2.charAt(j)!='.')j++;
                v2=Integer.parseInt(version2.substring(temp,j));
            }
            if(j<version2.length())j++;
            if(v1<v2)return -1;
            else if(v1>v2)return 1;
        }
        return 0;
    }

    boolean valid(String s)
    {
        return true;

    }
}
基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值