poj 1228 求一个稳定凸包

本文介绍了一个算法问题,即如何通过剩余的钉子来确定农场边界的独特性。输入包括钉子的数量及坐标,输出则是边界是否能被唯一确定。

Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.
Input
The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.
Output
There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.
Sample Input
1
6 
0 0
1 2
3 4
2 0
2 4 
5 0
Sample Output
NO

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>

using namespace std;

const int N = 40005;

typedef double DIY;

struct Point
{
    DIY x,y;
};

Point p[N];
Point stack[N];
Point MinA;

int top;

DIY dist(Point A,Point B)
{
    return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
}

DIY cross(Point A,Point B,Point C)
{
    return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
}

bool cmp(Point a,Point b)
{
    DIY k=cross(MinA,a,b);
    if(k>0) return 1;
    if(k<0) return 0;
    return dist(MinA,a)<dist(MinA,b);  //这里共线的点按距离从小到大排序
}

void Graham(int n)
{
    int i;
    for(i=1; i<n; i++)
        if(p[i].y<p[0].y||(p[i].y==p[0].y&&p[i].x<p[0].x))
            swap(p[i],p[0]);
    MinA=p[0];
    sort(p+1,p+n,cmp);
    stack[0]=p[0];
    stack[1]=p[1];
    top=1;
    for(i=2; i<n; i++)
    {
        //注意这里我们把共线的点也压入凸包里
        while(cross(stack[top-1],stack[top],p[i])<0&&top>=1) --top;
        stack[++top]=p[i];
    }
}

bool Judge()
{
    for(int i=1;i<top;i++)
    {
        //判断凸包的一条边上是否至少有3点
        if((cross(stack[i-1],stack[i+1],stack[i]))!=0&&(cross(stack[i],stack[i+2],stack[i+1]))!=0)
            return false;
    }
    return true;
}

int main()
{
    int t,n,i;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(i=0;i<n;i++)
            scanf("%lf%lf",&p[i].x,&p[i].y);
        if(n<6)
        {
            puts("NO");
            continue;
        }
        Graham(n);
        /*cout<<endl;
        for(i=0;i<n;i++)
          cout<<p[i].x<<" "<<p[i].y<<endl;
        cout<<endl;
        for(i=0;i<=top;i++)
          cout<<stack[i].x<<" "<<stack[i].y<<endl;
          */
        if(Judge()) puts("YES");
        else        puts("NO");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值