时间的焦虑与别人的生活

2018年4月8日

昨天在公交上,坐在位子上,下一站两个女生上车了,就开始讨论娱乐圈,本来用手机在看书,可是被喋喋不休的讨论给打断思绪,中间夹杂着笑声,突然思绪飘远。

1 . 我不玩微博,不玩朋友圈,不玩抖音,不玩火山小视频,只偶尔关心下空间朋友的说说,我不关心娱乐圈的谁谁谁又离婚或者结婚,我唯一的偶像大概是周杰伦,他才华横溢,谦虚又三观正,靠自己活出精彩人生。别人讨论明星的时候我都不认识,为什么我不关心这些,因为这是别人的生活。

2 . 热衷于关心别人的生活,大概是围观群众的共同爱好,而我却常常对时间感到焦虑,时间太少,要做的事情太多,这世界太多美好的事情,想

和亲人,喜欢的人一起去分享这个世界。我没有空余的时间来关心别人。

3 . 我们常常焦虑时间无多,同时想要有一种可以确定一定能成功的方法,且这个方法简单,直接,有效,快速。当我写下这些的时候,我相信你已经能发现了,这种想法是多么异想天开。如果有,其实这些方法已经经过古人的总结,我们早已从小就知道,那就是’坚持’。有人说他只是想找相对科学的一种方法,这其实没错,毕竟经过证实且有效的更好的方法我们都希望去使用,但你为什么不能先网上搜下对应的资料,先打好基础,闲余时间在找寻更好的方法,这样做的好处就是,你已经有相应的基础,在判断这些方法的时候能够去判断是否适合自己,其实最科学的方法就是适合自己的方法。如果你不去做,不去坚持,只是在门外看,那你永远不会靠近你的目标。
-4.11

内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
内容概要:论文《基于KANN-DBSCAN带宽优化的核密度估计载荷谱外推》针对传统核密度估计(KDE)载荷外推中使用全局固定带宽的局限性,提出了一种基于改进的K平均最近邻DBSCAN(KANN-DBSCAN)聚类算法优化带宽选择的核密度估计方法。该方法通过对载荷数据进行KANN-DBSCAN聚类分组,采用拇指法(ROT)计算各簇最优带宽,再进行核密度估计和蒙特卡洛模拟外推。实验以电动汽车实测载荷数据为对象,通过统计参数、拟合度和伪损伤三个指标验证了该方法的有效性,误差显著降低,拟合度R²>0.99,伪损伤接近1。 适合人群:具备一定编程基础和载荷数据分析经验的研究人员、工程师,尤其是从事汽车工程、机械工程等领域的工作1-5年研发人员。 使用场景及目标:①用于电动汽车载荷谱编制,提高载荷预测的准确性;②应用于机械零部件的载荷外推,特别是非对称载荷分布和多峰扭矩载荷;③实现智能网联汽车载荷预测数字孪生集成,提供动态更新的载荷预测系统。 其他说明:该方法不仅解决了传统KDE方法在复杂工况下的“过平滑”“欠拟合”问题,还通过自适应参数机制提高了方法的普适性和计算效率。实际应用中,建议结合MATLAB代码实现,确保数据质量,优化参数并通过伪损伤误差等指标进行验证。此外,该方法可扩展至风电装备、航空结构健康监测等多个领域,未来研究方向包括高维载荷扩展、实时外推和多物理场耦合等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值