NMI (normalized mutual information):
在information theory的理论框架下比较两个可重叠划分(overlapping clusters)的方法。
有两个不同划分C'={X1, X2, ...X|C'|}, C''={Y1, Y2, ..., Y|C''|}
H(X) 表示X的熵(entrophy),H(X|Y)表示条件熵 (conditilnal entrophy)
步骤
To sum up, all the procedure reduces to1. for a given k, compute H(Xk|Yl) for each l using the probabilities given by equations (B.4)–(B.7)



2. compute H(Xk|Y) from equation (B.9) taking into account the constraint given in equation (B.14); note that if this condition is never fulfilled, we decided to set H(Xk|Y)= H(Xk);


3 for each k, repeat the previous step to compute H(X|Y)norm according to equation (B.11);

4 repeat all this for Y and put everything together in equation (B.12).

参考文献:
Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015. doi:10.1088/1367-2630/11/3/033015
NMI在复杂网络中的应用
本文介绍了一种用于评估复杂网络中不同可重叠社区划分相似性的方法——归一化互信息(NMI)。通过计算两个不同划分的熵及条件熵来量化它们之间的相似程度。适用于检测网络中的重叠和层级社区结构。
3083

被折叠的 条评论
为什么被折叠?



