今天我们来闲聊聊chatGPT,然后带出一些目前神经网络或者更大一些人工智能存在的问题,仅作抛砖引玉。我不管OpenAI用什么方式炒作,Q*也好,AI自我意识也好,董事会内斗也罢;首先它的成绩还是非常出色的,并且chatGPT这个产品在大规模使用深度模型上算是非常成功的,however,chatGPT只能算是 Artificial If-clauses(AI, 姑且命名为人工条件生成器),算不上人工智能(Aritificial Intelligence, AI);我们离真正的人工智能还有一定的距离。
ChatGPT没有智能
ChatGPT的效果是惊艳的,大量数据被压缩成了vector,折叠起来,存储起来,需要的时候播放出来。我们要肯定它在数据压缩技术上的突破。
我们可以先参考这两篇论文,诉说着现在的深度神经网络和数据压缩的关系。
Opening the Black Box of Deep Neural Networks via Information, 2017
White-Box Transformers via Sparse Rate Reduction, 2023
简单来说,第一篇是想探索没有BP过程如何能训练神经网络(这篇是探索人工智能很重要的一步),第二篇则是将Transformer用信息论的方式导出了一个更明确的解释(相当于sigmoid和二分类问题的关联解释);具体的话知乎和优快云上专家们比我解释得详细得多,有兴趣可以自行搜索查阅。深度神经网络的可解释性一直备受关注,大家都希望通过解释各个层的用途,从而更好控制整个网络的性能。
discriminative(判别