汉明码

汉明码实现原理


汉明码(Hamming Code)是广泛用于内存和磁盘纠错的编码。汉明码不仅可以用来检测转移数据时发生的错误,还可以用来修正错误。(要注意的是,汉明码只能发现和修正一位错误,对于两位或者两位以上的错误无法正确和发现)。

汉明码的实现原则是在原来的数据的插入k位数据作为校验位,把原来的N为数据变为m(m = n +k)位编码。其中编码时要满足以下原则:

2^k - 1 >= m 其中(m = n + k)

这就是Hamming不等式,汉明码规定,我们所得到的m位编码的2^k ( k>=0 && 2^k < m)位上插入特殊的校验码,其余位把源码按顺序放置。

汉明码的编码规则如下:

  • 在新的编码的2^(k - 1)( k >= 0)位上填入0(即校验位)
  • 把新的编码的其余位把源码按原顺序填入
  • 校验位的编码方式为:第k位校验码从则从新的编码的第2^(k - 1)位开始,每计算2^(k - 1)位的异或,跳2^(k - 1)位,再计算下一组2^(k - 1)位的异或,填入2^(k - 1)位,比如:
    第1位校验码位于新的编码的第1位(2 ^(1-1) == 1)(汉明码从1位开始),计算1,3,5,7,9,11,13,15,...位的异或,填入新的编码的第1位。
    第2位校验码位于新的编码的第2位(2 ^(2-1) == 2),计算2,3,6,7,10,11,14,15,...位的异或,填入新的编码的第2位。
    第3位校验码位于新的编码的第4位(2 ^(3-1) == 4),计算4,5,6,7,12,13,14,15,20,21,22,23,...位的异或,填入新的编码的第4位。
    第4位校验码位于新的编码的第8位(2 ^(4-1) == 8),计算8-15,24-31,40-47,...位的异或,填入新的编码的第8位。
    第5位校验码位于新的编码的第16位(2 ^(5-1) == 16),计算16-31,48-63,80-95,...位的异或,填入新的编码的第16位。

汉明码编码实例


以10101编码为例,创建一个汉明码编码的空间,并且把源码填入编码的对应位中中,_ _ 1 _ 0 10 _ 1,并留出校验码位(校验位先设为0)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值