1.ID3决策树算法
https://blog.youkuaiyun.com/qq_36330643/article/details/77415451
2.C4.5决策树算法
https://blog.youkuaiyun.com/zhihua_oba/article/details/70632622
3.GBDT详解
基于残差的gbdt是一种特殊的gbdt模型,它的损失函数是平方损失函数,常用来处理回归类的问题。
https://zhuanlan.zhihu.com/p/29765582
https://www.cnblogs.com/peizhe123/p/5086128.html
4.CART决策树算法
https://www.cnblogs.com/yonghao/p/5135386.html
5.朴素贝叶斯算法
https://blog.youkuaiyun.com/shengweisong/article/details/52750907
6.logistic回归
https://www.cnblogs.com/home123/p/7356523.html
7.异常检测(欺诈)
http://baijiahao.baidu.com/s?id=1599068399235692908&wfr=spider&for=pc
8.数据预处理
https://www.cnblogs.com/dshn/p/8856173.html
9.凝聚层次聚类
https://blog.youkuaiyun.com/u012500237/article/details/65437525
10,DBSCAN算法
https://blog.youkuaiyun.com/huacha__/article/details/81094891
11.classification_report&精确度/召回率/F1值
https://blog.youkuaiyun.com/akadiao/article/details/78788864
12.xgboost进行二分类或者多分类
https://blog.youkuaiyun.com/kwame211/article/details/81098025
https://blog.youkuaiyun.com/wang1127248268/article/details/76769016
https://blog.youkuaiyun.com/kwame211/article/details/81098025
13.稀疏特征
https://www.cnblogs.com/yifdu25/p/8128028.html
https://blog.youkuaiyun.com/diligent_321/article/details/88138393
14.正则化
https://blog.youkuaiyun.com/speargod/article/details/80233619
15.XGBoost
https://xgboost.readthedocs.io/en/latest/python/python_api.html
采用多棵CART树进行累加得到结果。每棵树可以随机选择特征与样本
16.AOC曲线和AUC值
https://www.cnblogs.com/dlml/p/4403482.html
17.使用sklearn进行增量学习
https://blog.youkuaiyun.com/whiterbear/article/details/53120004
https://www.zhihu.com/question/38034287?sort=created
12.plotly使用基本介绍
https://blog.youkuaiyun.com/tansuo17/article/details/79238505
13.Xgboost参数解释及调参
evals (list of pairs (DMatrix, string)):[(train,'train'),(test,'valid')]后面的string为返回结果时使用result['valid']获取结果
https://blog.youkuaiyun.com/iyuanshuo/article/details/80142730
14.深度学习教程
https://www.zybuluo.com/hanbingtao/note/433855
15.RNN详解
https://blog.youkuaiyun.com/wangyangzhizhou/article/details/76278375
https://blog.youkuaiyun.com/wangyangzhizhou/article/details/77679261
16.LSTM介绍
https://www.cnblogs.com/wushaogui/p/9176617.html
https://blog.youkuaiyun.com/qq_43631663/article/details/88563663
17 tensorflow rnn接口详解
https://zhuanlan.zhihu.com/p/28196873
18.rnn中time_step介绍
https://www.zhihu.com/question/271774530/answer/364711129
https://blog.youkuaiyun.com/weixin_37659245/article/details/89945487
19.为什么L1正则化比L2正则化更容易获得稀疏解
https://blog.youkuaiyun.com/Ahead_J/article/details/85100177
20.图神经网络
https://www.cnblogs.com/SivilTaram/p/graph_neural_network_1.html
21.使用Tensorflow训练LSTM+Attention中文标题党分类
https://blog.youkuaiyun.com/huanghaocs/article/details/85255227
22.决策树,随机森林可视化
https://blog.youkuaiyun.com/linhai1028/article/details/79827331
from sklearn.tree import export_graphviz
# Export as dot file
export_graphviz(estimator, out_file='tree.dot',
feature_names = iris.feature_names,
class_names = iris.target_names,
rounded = True, proportion = False,
precision = 2, filled = True)
'''
# 使用系统命令转换为png(需要Graphviz)
from subprocess import call
call(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600'])