拉普拉斯矩阵

1
2
3
4
5
6
邻接矩阵 adjacency matrix

无权无平行边网络 A A A, N × N N\times N N×N, 若 边 ( i , j ) (i,j) (i,j) 存在, 则 a i j = 1 a_{ij}=1 aij=1. 无自环网络 a i i = 0 a_{ii}=0 aii=0, 无向网络 a i j = a j i a_{ij}=a_{ji} aij=aji

有向无向
A = ( 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 ) A=\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} A=000001100010110000001010000001010000 A = ( 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 ) A=\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1\\ 1 & 0 & 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 & 0 & 1\\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} A=011001101011110100001010010101110010
关联矩阵 incidence matrix

B B B, N × M N\times M N×M, M M M 为网络中当前所有存在的边. 边按字典升序 lexicographically ordered 排列.
有向 N × M N\times M N×M
N = 6 N=6 N=6, M = 9 M=9 M=9,
e 1 = 1 → 2 e_1=1\rightarrow 2 e1=12, e 2 = 1 → 3 e_2=1\rightarrow 3 e2=13, e 3 = 1 ← 6 e_3=1\leftarrow 6 e3=16,
e 4 = 2 → 3 e_4=2\rightarrow 3 e4=23, e 5 = 2 ← 5 e_5=2\leftarrow 5 e5=25, e 6 = 2 → 6 e_6=2\rightarrow 6 e6=26,
e 7 = 3 → 4 e_7=3\rightarrow 4 e7=34,
e 8 = 4 ← 5 e_8=4\leftarrow 5 e8=45,
e 9 = 5 ← 6 e_9=5\leftarrow 6 e9=56

B o r i e n t e d = ( 1 1 − 1 0 0 0 0 0 0 − 1 0 0 1 − 1 1 0 0 0 0 − 1 0 − 1 0 0 1 0 0 0 0 0 0 0 0 − 1 − 1 0 0 0 0 0 1 0 0 1 − 1 0 0 1 0 0 − 1 0 0 1 ) B_{oriented}=\begin{pmatrix} 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ -1 & 0 & 0 & 1 & -1 & 1 &0 & 0 & 0\\ 0 & -1 & 0 & -1 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1\\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix} Boriented=110000101000100001011000010010010001001100000110000011
无向 (oriented) N × 2 M N\times 2M N×2M
N = 6 N=6 N=6, 2 M = 18 2M=18 2M=18,
e 1 = 1 → 2 e_1=1\rightarrow 2 e1=12, e 2 = 1 ← 2 e_2=1\leftarrow 2 e2=12, e 3 = 1 → 3 e_3=1\rightarrow 3 e3=13, e 4 = 1 ← 3 e_4=1\leftarrow 3 e4=13, e 5 = 1 → 6 e_5=1\rightarrow 6 e5=16, e 6 = 1 ← 6 e_6=1\leftarrow 6 e6=16,
e 7 = 2 → 3 e_7=2\rightarrow 3 e7=23, e 8 = 2 ← 3 e_8=2\leftarrow 3 e8=23, e 9 = 2 → 5 e_9=2\rightarrow 5 e9=25, e 10 = 2 ← 5 e_{10}=2\leftarrow 5 e10=25, e 11 = 2 → 6 e_{11}=2\rightarrow 6 e11=26, e 12 = 2 ← 6 e_{12}=2\leftarrow 6 e12=26,
e 13 = 3 → 4 e_{13}=3\rightarrow 4 e13=34, e 14 = 3 ← 4 e_{14}=3\leftarrow 4 e14=34,
e 15 = 4 → 5 e_{15}=4\rightarrow 5 e15=45, e 16 = 4 ← 5 e_{16}=4\leftarrow 5 e16=45,
e 17 = 5 → 6 e_{17}=5\rightarrow 6 e17=56, e 18 = 5 ← 6 e_{18}=5\leftarrow 6 e18=56
B o r i e n t e d = ( 1 − 1 1 − 1 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0 − 1 1 0 0 0 0 1 − 1 1 − 1 1 − 1 0 0 0 0 0 0 0 0 − 1 1 0 0 − 1 1 0 0 0 0 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 1 1 − 1 0 0 0 0 0 0 0 0 0 0 − 1 1 0 0 0 0 − 1 1 1 − 1 0 0 0 0 − 1 1 0 0 0 0 − 1 1 0 0 0 0 − 1 1 ) B_{oriented}=\begin{pmatrix} 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1\\ \end{pmatrix} Boriented=110000110000101000101000100001100001011000011000010010010010010001010001001100001100000110000110000011000011
( o r i e n t e d )   b i m = { 1 , if link  e m = i → j − 1 , if link  e m = i ← j 0 , otherwise (oriented)~b_{im}= \begin{cases} 1, & \text{if link $e_m=i\rightarrow j$} \\ -1, & \text{if link $e_m=i\leftarrow j$} \\ 0, & \text{otherwise} \end{cases} (oriented) bim=1,1,0,if link em=ijif link em=ijotherwise

无向 (unoriented) N × M N\times M N×M
e 1 = 1 − 2 e_1=1 - 2 e1=12, e 2 = 1 − 3 e_2=1 - 3 e2=13, e 3 = 1 − 6 e_3=1 - 6 e3=16,
e 4 = 2 − 3 e_4=2 - 3 e4=23, e 5 = 2 − 5 e_5=2 - 5 e5=25, e 6 = 2 − 6 e_6=2 - 6 e6=26,
e 7 = 3 − 4 e_7=3 - 4 e7=34,
e 8 = 4 − 5 e_8=4 - 5 e8=45,
e 9 = 5 − 6 e_9=5 - 6 e9=56
B u n o r i e n t e d = ( 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 ) B_{unoriented}=\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 1 & 1 & 1 &0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} Bunoriented=110000101000100001011000010010010001001100000110000011
( u n o r i e n t e d )   b i m = { 1 , if link  e m = i − j  incident 0 , otherwise (unoriented)~b_{im}= \begin{cases} 1, & \text{if link $e_m=i - j$ incident} \\ 0, & \text{otherwise} \end{cases} (unoriented) bim={1,0,if link em=ij incidentotherwise

度矩阵 degree matrix

Δ i i = d e g ( i ) = ∑ j A i j \Delta_{ii} =deg(i) = \sum_j A_{ij} Δii=deg(i)=jAij.
Δ i j = 0 \Delta_{ij}=0 Δij=0, i ≠ j i\neq j i=j

有向(出度+入度)无向
( 2 + 1 0 0 0 0 0 0 2 + 2 0 0 0 0 0 0 1 + 2 0 0 0 0 0 0 0 + 2 0 0 0 0 0 0 2 + 1 0 0 0 0 0 0 2 + 1 ) \begin{pmatrix} 2+1 & 0 & 0 & 0 & 0 & 0\\ 0 & 2+2 & 0 & 0 & 0 & 0\\ 0 & 0 & 1+2 & 0 & 0 & 0\\ 0 & 0 & 0 & 0+2 & 0 & 0\\ 0 & 0 & 0 & 0 & 2+1 & 0\\ 0 & 0 & 0 & 0 & 0 & 2+1 \end{pmatrix} 210000002200000012000000020000002100000021 ( 3 0 0 0 0 0 0 4 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 3 ) \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0\\ 0 & 4 & 0 & 0 & 0 & 0\\ 0 & 0 & 3 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix} 300000040000003000000200000030000003
拉普拉斯矩阵 Laplacian matrix
有向无向
B o r i e n t e d B o r i e n t e d T B_{oriented}B_{oriented}^T BorientedBorientedT B o r i e n t e d B o r i e n t e d T = 2 Δ − 2 A B_{oriented}B_{oriented}^T=2\Delta -2A BorientedBorientedT=2Δ2A
( 3 − 1 − 1 0 0 − 1 − 1 4 − 1 0 − 1 − 1 − 1 − 1 3 − 1 0 0 0 0 − 1 2 − 1 0 0 − 1 0 − 1 3 − 1 − 1 − 1 0 0 − 1 3 ) \begin{pmatrix} 3 & -1 & -1 & 0 & 0 & -1\\ -1 & 4 & -1 & 0 & -1 & -1\\ -1 & -1 & 3 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0\\ 0 & -1 & 0 & -1 & 3 & -1\\ -1 & -1 & 0 & 0 & -1 & 3 \end{pmatrix} 311001141011113100001210010131110013 ( 6 − 2 − 2 0 0 − 2 − 2 8 − 2 0 − 2 − 2 − 2 − 2 6 − 2 0 0 0 0 − 2 4 − 2 0 0 − 2 0 − 2 6 − 2 − 2 − 2 0 0 − 2 6 ) \begin{pmatrix} 6 & -2 & -2 & 0 & 0 & -2\\ -2 & 8 & -2 & 0 & -2 & -2 \\ -2 & -2 & 6 & -2 & 0 & 0 \\ 0 & 0 & -2 & 4 & -2 & 0 \\ 0 & -2 & 0 & -2 & 6 & -2 \\ -2 & -2 & 0 & 0 & -2 & 6 \end{pmatrix} 622002282022226200002420020262220026
Δ − A \Delta -A ΔA
( 3 − 1 − 1 0 0 − 1 − 1 4 − 1 0 − 1 − 1 − 1 − 1 3 − 1 0 0 0 0 − 1 2 − 1 0 0 − 1 0 − 1 3 − 1 − 1 − 1 0 0 − 1 3 ) \begin{pmatrix} 3 & -1 & -1 & 0 & 0 & -1\\ -1 & 4 & -1 & 0 & -1 & -1\\ -1 & -1 & 3 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0\\ 0 & -1 & 0 & -1 & 3 & -1\\ -1 & -1 & 0 & 0 & -1 & 3 \end{pmatrix} 311001141011113100001210010131110013
B u n o r i e n t e d B u n o r i e n t e d T = Δ + A B_{unoriented}B_{unoriented}^T=\Delta + A BunorientedBunorientedT=Δ+A
( 3 1 1 0 0 1 1 4 1 0 1 1 1 1 3 1 0 0 0 0 1 2 1 0 0 1 0 1 3 1 1 1 0 0 1 3 ) \begin{pmatrix} 3 & 1 & 1 & 0 & 0 & 1\\ 1 & 4 & 1 & 0 & 1 & 1\\ 1 & 1 & 3 & 1 & 0 & 0\\ 0 & 0 & 1 & 2 & 1 & 0\\ 0 & 1 & 0 & 1 & 3 & 1\\ 1 & 1 & 0 & 0 & 1 & 3 \end{pmatrix} 311001141011113100001210010131110013

拉普拉斯矩阵定义在有向网络上, 并且邻接矩阵定义成对称形式, 即若 边 ( i , j ) (i,j) (i,j) 或者 ( j , i ) (j,i) (j,i) 存在, 则 a i j = 1 a_{ij}=1 aij=1, 则有 L = Δ − A = B B T L=\Delta-A=BB^T L=ΔA=BBT
L i j = Δ i j − A i j = ( B B T ) i j = ∑ m = 1 M b i m b j m = { − 1 , if  ( i , j )  are linked  i → j ,  i ≠ j 0 , if  ( i , j )  are not linked  i ↛ j ,  i ≠ j ∑ m = 1 M b i m 2 = d e g ( i ) , i = j L_{ij}=\Delta_{ij}-A_{ij}=(BB^T)_{ij}=\sum\limits_{m=1}^M b_{im}b_{jm}= \begin{cases} -1, & \text{if $(i, j)$ are linked $i\rightarrow j$, $i\neq j$} \\ 0, & \text{if $(i, j)$ are not linked $i\nrightarrow j$, $i\neq j$}\\ \sum_{m=1}^M b_{im}^2 = deg(i), & i=j \end{cases} Lij=ΔijAij=(BBT)ij=m=1Mbimbjm1,0,m=1Mbim2=deg(i),if (i,j) are linked iji=jif (i,j) are not linked iji=ji=j

随机游走归一化矩阵 Random walk normalized
邻接矩阵 A A A

归一化的邻接矩阵 normalized
P = Δ − 1 A P=\Delta^{-1}A P=Δ1A stochastic matrix 行随机矩阵. Δ \Delta Δ 为对角线为度的对角矩阵即度矩阵, A A A 为邻接矩阵. P P P 的行元素之和为 1, ∑ j P i j = 1 \sum_j P_{ij}=1 jPij=1. P P P 是随机游走 walker 的跳转矩阵, pagerank 的转移矩阵, Markov 的转移矩阵, Markov 理论与代数结合能够有很多好的数学性质. P i j = A i j k i = A i j ∑ j A i j P_{ij}=\frac{A_{ij}}{k_i}=\frac{A_{ij}}{\sum_j A_{ij}} Pij=kiAij=jAijAij walker 从 i i i 跳转到 j j j 概率.

对称化 P P P symmetric
H = Δ 1 / 2 H=\Delta^{1/2} H=Δ1/2, R = H P H − 1 = Δ 1 / 2 P Δ − 1 / 2 = Δ 1 / 2 Δ − 1 A Δ − 1 / 2 = Δ − 1 / 2 A Δ − 1 / 2 R=HPH^{-1}=\Delta^{1/2}P\Delta^{-1/2}=\Delta^{1/2}\Delta^{-1}A\Delta^{-1/2}=\Delta^{-1/2}A\Delta^{-1/2} R=HPH1=Δ1/2PΔ1/2=Δ1/2Δ1AΔ1/2=Δ1/2AΔ1/2
R = Δ − 1 / 2 A Δ − 1 / 2 R=\Delta^{-1/2}A\Delta^{-1/2} R=Δ1/2AΔ1/2 P P P 有相同的特征值.

拉普拉斯矩阵 L L L

归一化的拉普拉斯矩阵 L r w L^{rw} Lrw normalized
L r w = Δ − 1 L L^{rw}=\Delta^{-1}L Lrw=Δ1L
L r w = Δ − 1 L = Δ − 1 ( Δ − A ) = Δ − 1 Δ − Δ − 1 A = I − Δ − 1 A = I − P L^{rw}=\Delta^{-1}L=\Delta^{-1}(\Delta - A)=\Delta^{-1}\Delta -\Delta^{-1}A=I-\Delta^{-1}A=I-P Lrw=Δ1L=Δ1(ΔA)=Δ1ΔΔ1A=IΔ1A=IP. 因 P P P 是随机游走的转移矩阵, 所以 L r w = Δ − 1 L = I − Δ − 1 A L^{rw}=\Delta^{-1}L=I-\Delta^{-1}A Lrw=Δ1L=IΔ1A 称为随机游走 (random walk) 归一化拉普拉斯矩阵, 也因此标记为 L r w L^{rw} Lrw.
L i j r w = { − 1 d e g ( i ) , if  ( i , j )  are linked  i → j ,  i ≠ j 0 , if  ( i , j )  are not linked  i ↛ j ,  i ≠ j 1 , i = j , d e g ( i ) ≠ 0 L^{rw}_{ij}= \begin{cases} -\frac{1}{deg(i)}, & \text{if $(i, j)$ are linked $i\rightarrow j$, $i\neq j$} \\ 0, & \text{if $(i, j)$ are not linked $i\nrightarrow j$, $i\neq j$}\\ 1, & i=j, deg(i)\neq 0 \end{cases} Lijrw=deg(i)1,0,1,if (i,j) are linked iji=jif (i,j) are not linked iji=ji=j,deg(i)=0
L i j r w = { δ i j − A i j d e g ( i ) , d e g ( i ) ≠ 0 , (Kronecker delta:  δ i j = 1 , if  i = j ;  δ i j = 0 , if  i ≠ j )  0 , otherwise L^{rw}_{ij}=\begin{cases} \delta_{ij}-\frac{A_{ij}}{deg(i)}, & \text{$deg(i)\neq 0$, (Kronecker delta: $\delta_{ij}=1$, if $i=j$; $\delta_{ij}=0$, if $i\neq j$) } \\ 0, & \text{otherwise} \end{cases} Lijrw={δijdeg(i)Aij,0,deg(i)=0, (Kronecker delta: δij=1, if i=jδij=0, if i=jotherwise

L L L P P P 的数学关系
P = I − Δ − 1 L P=I-\Delta^{-1}L P=IΔ1L

归一化的拉普拉斯矩阵 L s y m L^{sym} Lsym
L s y m = Δ − 1 / 2 L Δ − 1 / 2 = Δ − 1 / 2 ( Δ − A ) Δ − 1 / 2 = ( Δ − 1 / 2 Δ − Δ − 1 / 2 A ) Δ − 1 / 2 = ( Δ 1 / 2 − Δ − 1 / 2 A ) Δ − 1 / 2 = Δ 1 / 2 Δ − 1 / 2 − Δ − 1 / 2 A Δ − 1 / 2 = I − Δ − 1 / 2 A Δ − 1 / 2 L^{sym}=\Delta^{-1/2}L\Delta^{-1/2}=\Delta^{-1/2}(\Delta - A)\Delta^{-1/2}=(\Delta^{-1/2}\Delta - \Delta^{-1/2}A)\Delta^{-1/2}=(\Delta^{1/2} - \Delta^{-1/2}A)\Delta^{-1/2}=\Delta^{1/2}\Delta^{-1/2} - \Delta^{-1/2}A\Delta^{-1/2}=I - \Delta^{-1/2}A\Delta^{-1/2} Lsym=Δ1/2LΔ1/2=Δ1/2(ΔA)Δ1/2=(Δ1/2ΔΔ1/2A)Δ1/2=(Δ1/2Δ1/2A)Δ1/2=Δ1/2Δ1/2Δ1/2AΔ1/2=IΔ1/2AΔ1/2
L i j s y m = { − 1 d e g ( i ) d e g ( j ) , if  ( i , j )  are linked  i → j ,  i ≠ j 0 , if  ( i , j )  are not linked  i ↛ j ,  i ≠ j 1 , i = j , d e g ( i ) ≠ 0 L^{sym}_{ij}= \begin{cases} -\frac{1}{\sqrt{deg(i)deg(j)}}, & \text{if $(i, j)$ are linked $i\rightarrow j$, $i\neq j$} \\ 0, & \text{if $(i, j)$ are not linked $i\nrightarrow j$, $i\neq j$}\\ 1, & i=j, deg(i)\neq 0 \end{cases} Lijsym=deg(i)deg(j) 1,0,1,if (i,j) are linked iji=jif (i,j) are not linked iji=ji=j,deg(i)=0
L i j s y m = { − A i j d e g ( i ) d e g ( j ) , d e g ( i ) ≠ 0  and  d e g ( j ) ≠ 0 1 , d e g ( i ) ≠ 0 , i = j 0 , otherwise L^{sym}_{ij}=\begin{cases} -\frac{A_{ij}}{\sqrt{deg(i)deg(j)}}, & \text{$deg(i)\neq 0$ and $deg(j)\neq 0$} \\ 1, & deg(i)\neq 0, i=j \\ 0, & \text{otherwise} \end{cases} Lijsym=deg(i)deg(j) Aij,1,0,deg(i)=0 and deg(j)=0deg(i)=0,i=jotherwise

P P P, L r w L^{rw} Lrw, L s y m L^{sym} Lsym的数学关系
L s y m = Δ − 1 / 2 L Δ − 1 / 2 = Δ 1 / 2 Δ − 1 L Δ − 1 / 2 = Δ 1 / 2 L r w Δ − 1 / 2 L^{sym}=\Delta^{-1/2}L\Delta^{-1/2}=\Delta^{1/2}\Delta^{-1}L\Delta^{-1/2}=\Delta^{1/2}L^{rw}\Delta^{-1/2} Lsym=Δ1/2LΔ1/2=Δ1/2Δ1LΔ1/2=Δ1/2LrwΔ1/2

L r w = Δ − 1 / 2 L s y m Δ 1 / 2 = Δ − 1 / 2 ( I − I + L s y m ) Δ 1 / 2 = Δ − 1 / 2 ( I − ( I − L s y m ) ) Δ 1 / 2 = I − Δ − 1 / 2 ( I − L s y m ) Δ 1 / 2 L^{rw}=\Delta^{-1/2}L^{sym}\Delta^{1/2}=\Delta^{-1/2}(I-I+L^{sym})\Delta^{1/2}=\Delta^{-1/2}(I-(I-L^{sym}))\Delta^{1/2}=I-\Delta^{-1/2}(I-L^{sym})\Delta^{1/2} Lrw=Δ1/2LsymΔ1/2=Δ1/2(II+Lsym)Δ1/2=Δ1/2(I(ILsym))Δ1/2=IΔ1/2(ILsym)Δ1/2

The graph Laplacians, L L L, L s y m L^{sym} Lsym, and L r w L^{rw} Lrw are symmetric, positive, semide nite.
The graph Laplacians, L L L and L r w L^{rw} Lrw have the same nullspace.
The vector 1 \mathbf{1} 1 is in the nullspace of L r w L^{rw} Lrw, and D 1 / 2 1 D_{1/2} \mathbf{1} D1/21 is in the nullspace of L s y m L^{sym} Lsym.

Ref:
[1]. 2013, Jean Gallier, Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts
[2]. 2007, L. W. Beineke, Topics in Algebraic Graph Theory
[3]. https://en.wikipedia.org/wiki/Laplacian_matrix
[4]. https://en.wikipedia.org/wiki/Line_graph
[5]. https://en.wikipedia.org/wiki/Incidence_matrix
[6]. http://mathworld.wolfram.com/LaplacianMatrix.html
[7]. 2011, P.V. Mieghem, Graph Spectra for Complex Networks

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值