文章目录
邻接矩阵 adjacency matrix
无权无平行边网络 A A A, N × N N\times N N×N, 若 边 ( i , j ) (i,j) (i,j) 存在, 则 a i j = 1 a_{ij}=1 aij=1. 无自环网络 a i i = 0 a_{ii}=0 aii=0, 无向网络 a i j = a j i a_{ij}=a_{ji} aij=aji
| 有向 | 无向 |
|---|---|
| A = ( 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 ) A=\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} A=⎝⎜⎜⎜⎜⎜⎜⎛000001100010110000001010000001010000⎠⎟⎟⎟⎟⎟⎟⎞ | A = ( 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 ) A=\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1\\ 1 & 0 & 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 & 0 & 1\\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} A=⎝⎜⎜⎜⎜⎜⎜⎛011001101011110100001010010101110010⎠⎟⎟⎟⎟⎟⎟⎞ |
关联矩阵 incidence matrix
B
B
B,
N
×
M
N\times M
N×M,
M
M
M 为网络中当前所有存在的边. 边按字典升序 lexicographically ordered 排列.
有向
N
×
M
N\times M
N×M
N
=
6
N=6
N=6,
M
=
9
M=9
M=9,
e
1
=
1
→
2
e_1=1\rightarrow 2
e1=1→2,
e
2
=
1
→
3
e_2=1\rightarrow 3
e2=1→3,
e
3
=
1
←
6
e_3=1\leftarrow 6
e3=1←6,
e
4
=
2
→
3
e_4=2\rightarrow 3
e4=2→3,
e
5
=
2
←
5
e_5=2\leftarrow 5
e5=2←5,
e
6
=
2
→
6
e_6=2\rightarrow 6
e6=2→6,
e
7
=
3
→
4
e_7=3\rightarrow 4
e7=3→4,
e
8
=
4
←
5
e_8=4\leftarrow 5
e8=4←5,
e
9
=
5
←
6
e_9=5\leftarrow 6
e9=5←6
B
o
r
i
e
n
t
e
d
=
(
1
1
−
1
0
0
0
0
0
0
−
1
0
0
1
−
1
1
0
0
0
0
−
1
0
−
1
0
0
1
0
0
0
0
0
0
0
0
−
1
−
1
0
0
0
0
0
1
0
0
1
−
1
0
0
1
0
0
−
1
0
0
1
)
B_{oriented}=\begin{pmatrix} 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ -1 & 0 & 0 & 1 & -1 & 1 &0 & 0 & 0\\ 0 & -1 & 0 & -1 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1\\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}
Boriented=⎝⎜⎜⎜⎜⎜⎜⎛1−1000010−1000−10000101−10000−1001001000−1001−100000−1100000−11⎠⎟⎟⎟⎟⎟⎟⎞
无向 (oriented)
N
×
2
M
N\times 2M
N×2M
N
=
6
N=6
N=6,
2
M
=
18
2M=18
2M=18,
e
1
=
1
→
2
e_1=1\rightarrow 2
e1=1→2,
e
2
=
1
←
2
e_2=1\leftarrow 2
e2=1←2,
e
3
=
1
→
3
e_3=1\rightarrow 3
e3=1→3,
e
4
=
1
←
3
e_4=1\leftarrow 3
e4=1←3,
e
5
=
1
→
6
e_5=1\rightarrow 6
e5=1→6,
e
6
=
1
←
6
e_6=1\leftarrow 6
e6=1←6,
e
7
=
2
→
3
e_7=2\rightarrow 3
e7=2→3,
e
8
=
2
←
3
e_8=2\leftarrow 3
e8=2←3,
e
9
=
2
→
5
e_9=2\rightarrow 5
e9=2→5,
e
10
=
2
←
5
e_{10}=2\leftarrow 5
e10=2←5,
e
11
=
2
→
6
e_{11}=2\rightarrow 6
e11=2→6,
e
12
=
2
←
6
e_{12}=2\leftarrow 6
e12=2←6,
e
13
=
3
→
4
e_{13}=3\rightarrow 4
e13=3→4,
e
14
=
3
←
4
e_{14}=3\leftarrow 4
e14=3←4,
e
15
=
4
→
5
e_{15}=4\rightarrow 5
e15=4→5,
e
16
=
4
←
5
e_{16}=4\leftarrow 5
e16=4←5,
e
17
=
5
→
6
e_{17}=5\rightarrow 6
e17=5→6,
e
18
=
5
←
6
e_{18}=5\leftarrow 6
e18=5←6
B
o
r
i
e
n
t
e
d
=
(
1
−
1
1
−
1
1
−
1
0
0
0
0
0
0
0
0
0
0
0
0
−
1
1
0
0
0
0
1
−
1
1
−
1
1
−
1
0
0
0
0
0
0
0
0
−
1
1
0
0
−
1
1
0
0
0
0
1
−
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
−
1
1
1
−
1
0
0
0
0
0
0
0
0
0
0
−
1
1
0
0
0
0
−
1
1
1
−
1
0
0
0
0
−
1
1
0
0
0
0
−
1
1
0
0
0
0
−
1
1
)
B_{oriented}=\begin{pmatrix} 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1\\ \end{pmatrix}
Boriented=⎝⎜⎜⎜⎜⎜⎜⎛1−10000−11000010−1000−10100010000−1−10000101−10000−110000100−100−1001001000−10−10001001−10000−11000001−10000−11000001−10000−11⎠⎟⎟⎟⎟⎟⎟⎞
(
o
r
i
e
n
t
e
d
)
b
i
m
=
{
1
,
if link
e
m
=
i
→
j
−
1
,
if link
e
m
=
i
←
j
0
,
otherwise
(oriented)~b_{im}= \begin{cases} 1, & \text{if link $e_m=i\rightarrow j$} \\ -1, & \text{if link $e_m=i\leftarrow j$} \\ 0, & \text{otherwise} \end{cases}
(oriented) bim=⎩⎪⎨⎪⎧1,−1,0,if link em=i→jif link em=i←jotherwise
无向 (unoriented)
N
×
M
N\times M
N×M
e
1
=
1
−
2
e_1=1 - 2
e1=1−2,
e
2
=
1
−
3
e_2=1 - 3
e2=1−3,
e
3
=
1
−
6
e_3=1 - 6
e3=1−6,
e
4
=
2
−
3
e_4=2 - 3
e4=2−3,
e
5
=
2
−
5
e_5=2 - 5
e5=2−5,
e
6
=
2
−
6
e_6=2 - 6
e6=2−6,
e
7
=
3
−
4
e_7=3 - 4
e7=3−4,
e
8
=
4
−
5
e_8=4 - 5
e8=4−5,
e
9
=
5
−
6
e_9=5 - 6
e9=5−6
B
u
n
o
r
i
e
n
t
e
d
=
(
1
1
1
0
0
0
0
0
0
1
0
0
1
1
1
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
1
0
0
1
0
0
1
0
0
1
)
B_{unoriented}=\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 1 & 1 & 1 &0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}
Bunoriented=⎝⎜⎜⎜⎜⎜⎜⎛110000101000100001011000010010010001001100000110000011⎠⎟⎟⎟⎟⎟⎟⎞
(
u
n
o
r
i
e
n
t
e
d
)
b
i
m
=
{
1
,
if link
e
m
=
i
−
j
incident
0
,
otherwise
(unoriented)~b_{im}= \begin{cases} 1, & \text{if link $e_m=i - j$ incident} \\ 0, & \text{otherwise} \end{cases}
(unoriented) bim={1,0,if link em=i−j incidentotherwise
度矩阵 degree matrix
Δ
i
i
=
d
e
g
(
i
)
=
∑
j
A
i
j
\Delta_{ii} =deg(i) = \sum_j A_{ij}
Δii=deg(i)=∑jAij.
Δ
i
j
=
0
\Delta_{ij}=0
Δij=0,
i
≠
j
i\neq j
i=j
| 有向(出度+入度) | 无向 |
|---|---|
| ( 2 + 1 0 0 0 0 0 0 2 + 2 0 0 0 0 0 0 1 + 2 0 0 0 0 0 0 0 + 2 0 0 0 0 0 0 2 + 1 0 0 0 0 0 0 2 + 1 ) \begin{pmatrix} 2+1 & 0 & 0 & 0 & 0 & 0\\ 0 & 2+2 & 0 & 0 & 0 & 0\\ 0 & 0 & 1+2 & 0 & 0 & 0\\ 0 & 0 & 0 & 0+2 & 0 & 0\\ 0 & 0 & 0 & 0 & 2+1 & 0\\ 0 & 0 & 0 & 0 & 0 & 2+1 \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎛2+10000002+20000001+20000000+20000002+10000002+1⎠⎟⎟⎟⎟⎟⎟⎞ | ( 3 0 0 0 0 0 0 4 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 3 ) \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0\\ 0 & 4 & 0 & 0 & 0 & 0\\ 0 & 0 & 3 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎛300000040000003000000200000030000003⎠⎟⎟⎟⎟⎟⎟⎞ |
拉普拉斯矩阵 Laplacian matrix
| 有向 | 无向 |
|---|---|
| B o r i e n t e d B o r i e n t e d T B_{oriented}B_{oriented}^T BorientedBorientedT | B o r i e n t e d B o r i e n t e d T = 2 Δ − 2 A B_{oriented}B_{oriented}^T=2\Delta -2A BorientedBorientedT=2Δ−2A |
| ( 3 − 1 − 1 0 0 − 1 − 1 4 − 1 0 − 1 − 1 − 1 − 1 3 − 1 0 0 0 0 − 1 2 − 1 0 0 − 1 0 − 1 3 − 1 − 1 − 1 0 0 − 1 3 ) \begin{pmatrix} 3 & -1 & -1 & 0 & 0 & -1\\ -1 & 4 & -1 & 0 & -1 & -1\\ -1 & -1 & 3 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0\\ 0 & -1 & 0 & -1 & 3 & -1\\ -1 & -1 & 0 & 0 & -1 & 3 \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎛3−1−100−1−14−10−1−1−1−13−10000−12−100−10−13−1−1−100−13⎠⎟⎟⎟⎟⎟⎟⎞ | ( 6 − 2 − 2 0 0 − 2 − 2 8 − 2 0 − 2 − 2 − 2 − 2 6 − 2 0 0 0 0 − 2 4 − 2 0 0 − 2 0 − 2 6 − 2 − 2 − 2 0 0 − 2 6 ) \begin{pmatrix} 6 & -2 & -2 & 0 & 0 & -2\\ -2 & 8 & -2 & 0 & -2 & -2 \\ -2 & -2 & 6 & -2 & 0 & 0 \\ 0 & 0 & -2 & 4 & -2 & 0 \\ 0 & -2 & 0 & -2 & 6 & -2 \\ -2 & -2 & 0 & 0 & -2 & 6 \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎛6−2−200−2−28−20−2−2−2−26−20000−24−200−20−26−2−2−200−26⎠⎟⎟⎟⎟⎟⎟⎞ |
| … | Δ − A \Delta -A Δ−A |
| … | ( 3 − 1 − 1 0 0 − 1 − 1 4 − 1 0 − 1 − 1 − 1 − 1 3 − 1 0 0 0 0 − 1 2 − 1 0 0 − 1 0 − 1 3 − 1 − 1 − 1 0 0 − 1 3 ) \begin{pmatrix} 3 & -1 & -1 & 0 & 0 & -1\\ -1 & 4 & -1 & 0 & -1 & -1\\ -1 & -1 & 3 & -1 & 0 & 0\\ 0 & 0 & -1 & 2 & -1 & 0\\ 0 & -1 & 0 & -1 & 3 & -1\\ -1 & -1 & 0 & 0 & -1 & 3 \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎛3−1−100−1−14−10−1−1−1−13−10000−12−100−10−13−1−1−100−13⎠⎟⎟⎟⎟⎟⎟⎞ |
| — | B u n o r i e n t e d B u n o r i e n t e d T = Δ + A B_{unoriented}B_{unoriented}^T=\Delta + A BunorientedBunorientedT=Δ+A |
| — | ( 3 1 1 0 0 1 1 4 1 0 1 1 1 1 3 1 0 0 0 0 1 2 1 0 0 1 0 1 3 1 1 1 0 0 1 3 ) \begin{pmatrix} 3 & 1 & 1 & 0 & 0 & 1\\ 1 & 4 & 1 & 0 & 1 & 1\\ 1 & 1 & 3 & 1 & 0 & 0\\ 0 & 0 & 1 & 2 & 1 & 0\\ 0 & 1 & 0 & 1 & 3 & 1\\ 1 & 1 & 0 & 0 & 1 & 3 \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎛311001141011113100001210010131110013⎠⎟⎟⎟⎟⎟⎟⎞ |
拉普拉斯矩阵定义在有向网络上, 并且邻接矩阵定义成对称形式, 即若 边
(
i
,
j
)
(i,j)
(i,j) 或者
(
j
,
i
)
(j,i)
(j,i) 存在, 则
a
i
j
=
1
a_{ij}=1
aij=1, 则有
L
=
Δ
−
A
=
B
B
T
L=\Delta-A=BB^T
L=Δ−A=BBT
L
i
j
=
Δ
i
j
−
A
i
j
=
(
B
B
T
)
i
j
=
∑
m
=
1
M
b
i
m
b
j
m
=
{
−
1
,
if
(
i
,
j
)
are linked
i
→
j
,
i
≠
j
0
,
if
(
i
,
j
)
are not linked
i
↛
j
,
i
≠
j
∑
m
=
1
M
b
i
m
2
=
d
e
g
(
i
)
,
i
=
j
L_{ij}=\Delta_{ij}-A_{ij}=(BB^T)_{ij}=\sum\limits_{m=1}^M b_{im}b_{jm}= \begin{cases} -1, & \text{if $(i, j)$ are linked $i\rightarrow j$, $i\neq j$} \\ 0, & \text{if $(i, j)$ are not linked $i\nrightarrow j$, $i\neq j$}\\ \sum_{m=1}^M b_{im}^2 = deg(i), & i=j \end{cases}
Lij=Δij−Aij=(BBT)ij=m=1∑Mbimbjm=⎩⎪⎨⎪⎧−1,0,∑m=1Mbim2=deg(i),if (i,j) are linked i→j, i=jif (i,j) are not linked i↛j, i=ji=j
随机游走归一化矩阵 Random walk normalized
邻接矩阵 A A A
归一化的邻接矩阵 normalized
P
=
Δ
−
1
A
P=\Delta^{-1}A
P=Δ−1A stochastic matrix 行随机矩阵.
Δ
\Delta
Δ 为对角线为度的对角矩阵即度矩阵,
A
A
A 为邻接矩阵.
P
P
P 的行元素之和为 1,
∑
j
P
i
j
=
1
\sum_j P_{ij}=1
∑jPij=1.
P
P
P 是随机游走 walker 的跳转矩阵, pagerank 的转移矩阵, Markov 的转移矩阵, Markov 理论与代数结合能够有很多好的数学性质.
P
i
j
=
A
i
j
k
i
=
A
i
j
∑
j
A
i
j
P_{ij}=\frac{A_{ij}}{k_i}=\frac{A_{ij}}{\sum_j A_{ij}}
Pij=kiAij=∑jAijAij walker 从
i
i
i 跳转到
j
j
j 概率.
对称化
P
P
P symmetric
H
=
Δ
1
/
2
H=\Delta^{1/2}
H=Δ1/2,
R
=
H
P
H
−
1
=
Δ
1
/
2
P
Δ
−
1
/
2
=
Δ
1
/
2
Δ
−
1
A
Δ
−
1
/
2
=
Δ
−
1
/
2
A
Δ
−
1
/
2
R=HPH^{-1}=\Delta^{1/2}P\Delta^{-1/2}=\Delta^{1/2}\Delta^{-1}A\Delta^{-1/2}=\Delta^{-1/2}A\Delta^{-1/2}
R=HPH−1=Δ1/2PΔ−1/2=Δ1/2Δ−1AΔ−1/2=Δ−1/2AΔ−1/2
R
=
Δ
−
1
/
2
A
Δ
−
1
/
2
R=\Delta^{-1/2}A\Delta^{-1/2}
R=Δ−1/2AΔ−1/2 与
P
P
P 有相同的特征值.
拉普拉斯矩阵 L L L
归一化的拉普拉斯矩阵
L
r
w
L^{rw}
Lrw normalized
L
r
w
=
Δ
−
1
L
L^{rw}=\Delta^{-1}L
Lrw=Δ−1L
L
r
w
=
Δ
−
1
L
=
Δ
−
1
(
Δ
−
A
)
=
Δ
−
1
Δ
−
Δ
−
1
A
=
I
−
Δ
−
1
A
=
I
−
P
L^{rw}=\Delta^{-1}L=\Delta^{-1}(\Delta - A)=\Delta^{-1}\Delta -\Delta^{-1}A=I-\Delta^{-1}A=I-P
Lrw=Δ−1L=Δ−1(Δ−A)=Δ−1Δ−Δ−1A=I−Δ−1A=I−P. 因
P
P
P 是随机游走的转移矩阵, 所以
L
r
w
=
Δ
−
1
L
=
I
−
Δ
−
1
A
L^{rw}=\Delta^{-1}L=I-\Delta^{-1}A
Lrw=Δ−1L=I−Δ−1A 称为随机游走 (random walk) 归一化拉普拉斯矩阵, 也因此标记为
L
r
w
L^{rw}
Lrw.
L
i
j
r
w
=
{
−
1
d
e
g
(
i
)
,
if
(
i
,
j
)
are linked
i
→
j
,
i
≠
j
0
,
if
(
i
,
j
)
are not linked
i
↛
j
,
i
≠
j
1
,
i
=
j
,
d
e
g
(
i
)
≠
0
L^{rw}_{ij}= \begin{cases} -\frac{1}{deg(i)}, & \text{if $(i, j)$ are linked $i\rightarrow j$, $i\neq j$} \\ 0, & \text{if $(i, j)$ are not linked $i\nrightarrow j$, $i\neq j$}\\ 1, & i=j, deg(i)\neq 0 \end{cases}
Lijrw=⎩⎪⎨⎪⎧−deg(i)1,0,1,if (i,j) are linked i→j, i=jif (i,j) are not linked i↛j, i=ji=j,deg(i)=0
L
i
j
r
w
=
{
δ
i
j
−
A
i
j
d
e
g
(
i
)
,
d
e
g
(
i
)
≠
0
, (Kronecker delta:
δ
i
j
=
1
, if
i
=
j
;
δ
i
j
=
0
, if
i
≠
j
)
0
,
otherwise
L^{rw}_{ij}=\begin{cases} \delta_{ij}-\frac{A_{ij}}{deg(i)}, & \text{$deg(i)\neq 0$, (Kronecker delta: $\delta_{ij}=1$, if $i=j$; $\delta_{ij}=0$, if $i\neq j$) } \\ 0, & \text{otherwise} \end{cases}
Lijrw={δij−deg(i)Aij,0,deg(i)=0, (Kronecker delta: δij=1, if i=j; δij=0, if i=j) otherwise
L
L
L 与
P
P
P 的数学关系
P
=
I
−
Δ
−
1
L
P=I-\Delta^{-1}L
P=I−Δ−1L
归一化的拉普拉斯矩阵
L
s
y
m
L^{sym}
Lsym
L
s
y
m
=
Δ
−
1
/
2
L
Δ
−
1
/
2
=
Δ
−
1
/
2
(
Δ
−
A
)
Δ
−
1
/
2
=
(
Δ
−
1
/
2
Δ
−
Δ
−
1
/
2
A
)
Δ
−
1
/
2
=
(
Δ
1
/
2
−
Δ
−
1
/
2
A
)
Δ
−
1
/
2
=
Δ
1
/
2
Δ
−
1
/
2
−
Δ
−
1
/
2
A
Δ
−
1
/
2
=
I
−
Δ
−
1
/
2
A
Δ
−
1
/
2
L^{sym}=\Delta^{-1/2}L\Delta^{-1/2}=\Delta^{-1/2}(\Delta - A)\Delta^{-1/2}=(\Delta^{-1/2}\Delta - \Delta^{-1/2}A)\Delta^{-1/2}=(\Delta^{1/2} - \Delta^{-1/2}A)\Delta^{-1/2}=\Delta^{1/2}\Delta^{-1/2} - \Delta^{-1/2}A\Delta^{-1/2}=I - \Delta^{-1/2}A\Delta^{-1/2}
Lsym=Δ−1/2LΔ−1/2=Δ−1/2(Δ−A)Δ−1/2=(Δ−1/2Δ−Δ−1/2A)Δ−1/2=(Δ1/2−Δ−1/2A)Δ−1/2=Δ1/2Δ−1/2−Δ−1/2AΔ−1/2=I−Δ−1/2AΔ−1/2
L
i
j
s
y
m
=
{
−
1
d
e
g
(
i
)
d
e
g
(
j
)
,
if
(
i
,
j
)
are linked
i
→
j
,
i
≠
j
0
,
if
(
i
,
j
)
are not linked
i
↛
j
,
i
≠
j
1
,
i
=
j
,
d
e
g
(
i
)
≠
0
L^{sym}_{ij}= \begin{cases} -\frac{1}{\sqrt{deg(i)deg(j)}}, & \text{if $(i, j)$ are linked $i\rightarrow j$, $i\neq j$} \\ 0, & \text{if $(i, j)$ are not linked $i\nrightarrow j$, $i\neq j$}\\ 1, & i=j, deg(i)\neq 0 \end{cases}
Lijsym=⎩⎪⎪⎨⎪⎪⎧−deg(i)deg(j)1,0,1,if (i,j) are linked i→j, i=jif (i,j) are not linked i↛j, i=ji=j,deg(i)=0
L
i
j
s
y
m
=
{
−
A
i
j
d
e
g
(
i
)
d
e
g
(
j
)
,
d
e
g
(
i
)
≠
0
and
d
e
g
(
j
)
≠
0
1
,
d
e
g
(
i
)
≠
0
,
i
=
j
0
,
otherwise
L^{sym}_{ij}=\begin{cases} -\frac{A_{ij}}{\sqrt{deg(i)deg(j)}}, & \text{$deg(i)\neq 0$ and $deg(j)\neq 0$} \\ 1, & deg(i)\neq 0, i=j \\ 0, & \text{otherwise} \end{cases}
Lijsym=⎩⎪⎪⎨⎪⎪⎧−deg(i)deg(j)Aij,1,0,deg(i)=0 and deg(j)=0deg(i)=0,i=jotherwise
P
P
P,
L
r
w
L^{rw}
Lrw,
L
s
y
m
L^{sym}
Lsym的数学关系
L
s
y
m
=
Δ
−
1
/
2
L
Δ
−
1
/
2
=
Δ
1
/
2
Δ
−
1
L
Δ
−
1
/
2
=
Δ
1
/
2
L
r
w
Δ
−
1
/
2
L^{sym}=\Delta^{-1/2}L\Delta^{-1/2}=\Delta^{1/2}\Delta^{-1}L\Delta^{-1/2}=\Delta^{1/2}L^{rw}\Delta^{-1/2}
Lsym=Δ−1/2LΔ−1/2=Δ1/2Δ−1LΔ−1/2=Δ1/2LrwΔ−1/2
L r w = Δ − 1 / 2 L s y m Δ 1 / 2 = Δ − 1 / 2 ( I − I + L s y m ) Δ 1 / 2 = Δ − 1 / 2 ( I − ( I − L s y m ) ) Δ 1 / 2 = I − Δ − 1 / 2 ( I − L s y m ) Δ 1 / 2 L^{rw}=\Delta^{-1/2}L^{sym}\Delta^{1/2}=\Delta^{-1/2}(I-I+L^{sym})\Delta^{1/2}=\Delta^{-1/2}(I-(I-L^{sym}))\Delta^{1/2}=I-\Delta^{-1/2}(I-L^{sym})\Delta^{1/2} Lrw=Δ−1/2LsymΔ1/2=Δ−1/2(I−I+Lsym)Δ1/2=Δ−1/2(I−(I−Lsym))Δ1/2=I−Δ−1/2(I−Lsym)Δ1/2
The graph Laplacians, L L L, L s y m L^{sym} Lsym, and L r w L^{rw} Lrw are symmetric, positive, semide nite.
The graph Laplacians, L L L and L r w L^{rw} Lrw have the same nullspace.
The vector 1 \mathbf{1} 1 is in the nullspace of L r w L^{rw} Lrw, and D 1 / 2 1 D_{1/2} \mathbf{1} D1/21 is in the nullspace of L s y m L^{sym} Lsym.
Ref:
[1]. 2013, Jean Gallier, Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts
[2]. 2007, L. W. Beineke, Topics in Algebraic Graph Theory
[3]. https://en.wikipedia.org/wiki/Laplacian_matrix
[4]. https://en.wikipedia.org/wiki/Line_graph
[5]. https://en.wikipedia.org/wiki/Incidence_matrix
[6]. http://mathworld.wolfram.com/LaplacianMatrix.html
[7]. 2011, P.V. Mieghem, Graph Spectra for Complex Networks

2万+





