18、Token Jumping in Kℓ,ℓ-Free Graphs: A Polynomial Kernel Approach

Token Jumping in Kℓ,ℓ-Free Graphs: A Polynomial Kernel Approach

1. Introduction to Kℓ,ℓ-Free Graphs

Kℓ,ℓ-free graphs are graphs that do not contain a complete bipartite sub - graph (K_{\ell,\ell}). Kővári et al. proved that such graphs have a sub - quadratic number of edges.

  • Theorem 2 : For a (K_{\ell,\ell}) - free graph (G) with (n) vertices, the number of edges is at most (ex(n, K_{\ell,\ell})), where (ex(n, K_{\ell,\ell})\leq\left\lfloor\frac{\ell - 1}{2}\right\rfloor^{1/\ell}\cdot n^{2 - 1/\ell}+\frac{1}{2}(\ell - 1)n).
  • Corollary 1 : Every (K_{\ell,\ell}) - free graph with (k^{\ell}(4k)^{\ell}) vertices contains an independent set of size (k).
  • Theorem 3 (Bipartite Version
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值