试用 PGStrom

Postgres2015全国用户大会将于11月20至21日在北京丽亭华苑酒店召开。本次大会嘉宾阵容强大,国内顶级PostgreSQL数据库专家将悉数到场,并特邀欧洲、俄罗斯、日本、美国等国家和地区的数据库方面专家助阵:

  • Postgres-XC项目的发起人铃木市一(SUZUKI Koichi)
  • Postgres-XL的项目发起人Mason Sharp
  • pgpool的作者石井达夫(Tatsuo Ishii)
  • PG-Strom的作者海外浩平(Kaigai Kohei)
  • Greenplum研发总监姚延栋
  • 周正中(德哥), PostgreSQL中国用户会创始人之一
  • 汪洋,平安科技数据库技术部经理
  • ……
 
  • 2015年度PG大象会报名地址:http://postgres2015.eventdove.com/
  • PostgreSQL中国社区: http://postgres.cn/
  • PostgreSQL专业1群: 3336901(已满)
  • PostgreSQL专业2群: 100910388
  • PostgreSQL专业3群: 150657323



PGStrom是一个使用GPU进行并行计算的custom scan provider插件,架构如下:
试用 PGStrom - 德哥@Digoal - PostgreSQL research

试用 PGStrom - 德哥@Digoal - PostgreSQL research

从WIKI上的文档来看,性能提升非常可观。JOIN的表越多,提升效果越明显。
试用 PGStrom - 德哥@Digoal - PostgreSQL research

需要安装cuda7.0的驱动,以及toolkit。
安装过程遇到一个问题,libcuda.so没有放在Makefile指定的-L中。

gcc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -g -O2 -fpic src/gpuinfo.c -Wall -DPGSTROM_DEBUG=1 -O0 -DCMD_GPUINGO_PATH=\"/app_data/digoal/pgsql9.5/bin/gpuinfo\" -I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcuda -o src/gpuinfo
/usr/bin/ld: cannot find -lcuda
collect2: ld returned 1 exit status
make: *** [src/gpuinfo] Error 1

这个修改一下可以解决。

digoal-> cp /usr/local/cuda-7.0/lib64/stubs/libcuda.so /usr/local/cuda-7.0/lib64/
digoal-> ll /usr/local
total 92K
drwxr-xr-x   2 root root 4.0K Jun  9 11:35 bin
drwxr-xr-x 139 root root 4.0K Apr 14 18:40 clonescripts
drwxr-xr-x   4 root root 4.0K Apr 14 19:05 csf
lrwxrwxrwx   1 root root   19 Aug 14 16:42 cuda -> /usr/local/cuda-7.0
drwxr-xr-x  17 root root 4.0K Apr 15 16:37 cuda-6.5
drwxr-xr-x  17 root root 4.0K Aug 14 16:42 cuda-7.0


安装用到了PostgreSQL 9.5 alpha 2以及最新的PGStrom代码。
安装完后,通过gpuinfo可以看到当前的GPU信息:

digoal-> gpuinfo 
CUDA Runtime version: 7.0.0
NVIDIA Driver version: 346.59
Number of devices: 2
--------
Device Identifier: 0
Device Name: Tesla K40m
Global memory size: 11519MB
Maximum number of threads per block: 1024
Maximum block dimension X: 1024
Maximum block dimension Y: 1024
Maximum block dimension Z: 64
Maximum grid dimension X: 2147483647
Maximum grid dimension Y: 65535
Maximum grid dimension Z: 65535
Maximum shared memory available per block in bytes: 49152KB
Memory available on device for __constant__ variables: 65536bytes
Warp size in threads: 32
Maximum number of 32-bit registers available per block: 65536
Typical clock frequency in kilohertz: 745000KHZ
Number of multiprocessors on device: 15
Specifies whether there is a run time limit on kernels: 0
Device is integrated with host memory: false
Device can map host memory into CUDA address space: true
Compute mode (See CUcomputemode for details): default
Device can possibly execute multiple kernels concurrently: true
Device has ECC support enabled: true
PCI bus ID of the device: 2
PCI device ID of the device: 0
Device is using TCC driver model: false
Peak memory clock frequency in kilohertz: 3004000KHZ
Global memory bus width in bits: 384
Size of L2 cache in bytes: 1572864bytes
Maximum resident threads per multiprocessor: 2048
Number of asynchronous engines: 2
Device shares a unified address space with the host: true
Major compute capability version number: 3
Minor compute capability version number: 5
Device supports stream priorities: true
Device supports caching globals in L1: true
Device supports caching locals in L1: true
Maximum shared memory available per multiprocessor: 49152bytes
Maximum number of 32bit registers per multiprocessor: 65536
Device can allocate managed memory on this system: true
Device is on a multi-GPU board: false
Unique id for a group of devices on the same multi-GPU board: 0
--------
Device Identifier: 1
Device Name: Tesla K40m
Global memory size: 11519MB
Maximum number of threads per block: 1024
Maximum block dimension X: 1024
Maximum block dimension Y: 1024
Maximum block dimension Z: 64
Maximum grid dimension X: 2147483647
Maximum grid dimension Y: 65535
Maximum grid dimension Z: 65535
Maximum shared memory available per block in bytes: 49152KB
Memory available on device for __constant__ variables: 65536bytes
Warp size in threads: 32
Maximum number of 32-bit registers available per block: 65536
Typical clock frequency in kilohertz: 745000KHZ
Number of multiprocessors on device: 15
Specifies whether there is a run time limit on kernels: 0
Device is integrated with host memory: false
Device can map host memory into CUDA address space: true
Compute mode (See CUcomputemode for details): default
Device can possibly execute multiple kernels concurrently: true
Device has ECC support enabled: true
PCI bus ID of the device: 3
PCI device ID of the device: 0
Device is using TCC driver model: false
Peak memory clock frequency in kilohertz: 3004000KHZ
Global memory bus width in bits: 384
Size of L2 cache in bytes: 1572864bytes
Maximum resident threads per multiprocessor: 2048
Number of asynchronous engines: 2
Device shares a unified address space with the host: true
Major compute capability version number: 3
Minor compute capability version number: 5
Device supports stream priorities: true
Device supports caching globals in L1: true
Device supports caching locals in L1: true
Maximum shared memory available per multiprocessor: 49152bytes
Maximum number of 32bit registers per multiprocessor: 65536
Device can allocate managed memory on this system: true
Device is on a multi-GPU board: false
Unique id for a group of devices on the same multi-GPU board: 1

加载PGStrom

# vi $PGDATA/postgresql.conf
shared_preload_libraries = '$libdir/pg_strom'  

digoal-> pg_ctl restart -m fast
waiting for server to shut down.... done
server stopped
server starting

LOG:  CUDA Runtime version: 7.0.0
LOG:  NVIDIA driver version: 346.59
LOG:  GPU0 Tesla K40m (2880 CUDA cores, 745MHz), L2 1536KB, RAM 11519MB (384bits, 3004MHz), capability 3.5
LOG:  GPU1 Tesla K40m (2880 CUDA cores, 745MHz), L2 1536KB, RAM 11519MB (384bits, 3004MHz), capability 3.5
LOG:  NVRTC - CUDA Runtime Compilation vertion 7.0
LOG:  redirecting log output to logging collector process
HINT:  Future log output will appear in directory "pg_log".

试用:

postgres=# create extension pg_strom;
CREATE EXTENSION
postgres=# create table t1(c1 int,c2 int);
CREATE TABLE
postgres=# create table t2(c1 int,c2 int);
CREATE TABLE
postgres=# create table t3(c1 int,c2 int);
CREATE TABLE
postgres=# insert into t1 select generate_series(1,10000000),1;
INSERT 0 10000000
postgres=# insert into t2 select generate_series(1,10000000),1;
INSERT 0 10000000
postgres=# insert into t3 select generate_series(1,10000000),1;
INSERT 0 10000000


postgres=# explain (analyze,verbose,costs,buffers,timing) select count(*) from t1;
                                                                    QUERY PLAN                                                                    
--------------------------------------------------------------------------------------------------------------------------------------------------
 Aggregate  (cost=169247.71..169247.72 rows=1 width=0) (actual time=686.566..686.567 rows=1 loops=1)
   Output: pgstrom.count((pgstrom.nrows()))
   Buffers: shared hit=44275
   ->  Custom Scan (GpuPreAgg)  (cost=1000.00..145747.99 rows=22 width=4) (actual time=679.224..686.552 rows=28 loops=1)
         Output: pgstrom.nrows()
         Bulkload: On (density: 100.00%)
         Reduction: NoGroup
         Features: format: tuple-slot, bulkload: unsupported
         Buffers: shared hit=44275
         ->  Custom Scan (BulkScan) on public.t1  (cost=0.00..144247.77 rows=9999977 width=0) (actual time=13.184..354.634 rows=10000000 loops=1)
               Output: c1, c2
               Features: format: heap-tuple, bulkload: supported
               Buffers: shared hit=44275
 Planning time: 0.117 ms
 Execution time: 845.541 ms
(15 rows)

postgres=# explain (analyze,verbose,costs,buffers,timing) select count(*) from t1,t2,t3 where t1.c1=t2.c1 and t2.c1=t3.c1;
WARNING:  01000: failed on cuCtxSynchronize: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  pgstrom_release_gpucontext, cuda_control.c:974
WARNING:  01000: failed on cuCtxSynchronize: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  pgstrom_release_gpucontext, cuda_control.c:974
WARNING:  01000: AbortTransaction while in ABORT state
LOCATION:  AbortTransaction, xact.c:2471
ERROR:  XX000: failed on cuEventElapsedTime: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  gpujoin_task_complete, gpujoin.c:3404
ERROR:  XX000: failed on cuMemFree: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  gpuMemFreeAll, cuda_control.c:713


postgres=# explain (analyze,verbose,costs,buffers,timing) select count(*) from t1 natural join t2;
WARNING:  01000: failed on cuStreamDestroy: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  pgstrom_cleanup_gputask_cuda_resources, cuda_control.c:1718
WARNING:  01000: failed on cuStreamDestroy: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  pgstrom_cleanup_gputask_cuda_resources, cuda_control.c:1718
WARNING:  01000: failed on cuCtxSynchronize: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  pgstrom_release_gpucontext, cuda_control.c:974
WARNING:  01000: failed on cuCtxSynchronize: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  pgstrom_release_gpucontext, cuda_control.c:974
WARNING:  01000: AbortTransaction while in ABORT state
LOCATION:  AbortTransaction, xact.c:2471
ERROR:  XX000: failed on cuMemFree: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  __gpuMemFree, cuda_control.c:645
ERROR:  XX000: failed on cuMemFree: CUDA_ERROR_ASSERT - device-side assert triggered
LOCATION:  gpuMemFreeAll, cuda_control.c:701

JOIN 遇到以上问题. 没研究过CUDA,

/*
 * pgstrom_cleanup_gputask_cuda_resources
 *
 * it clears a common cuda resources; assigned on cb_task_process
 */
void
pgstrom_cleanup_gputask_cuda_resources(GpuTask *gtask)
{
        CUresult        rc;

        if (gtask->cuda_stream)
        {
                rc = cuStreamDestroy(gtask->cuda_stream);
                if (rc != CUDA_SUCCESS)
                        elog(WARNING, "failed on cuStreamDestroy: %s", errorText(rc));
        }
        gtask->cuda_index = 0;
        gtask->cuda_context = NULL;
        gtask->cuda_device = 0UL;
        gtask->cuda_stream = NULL;
        gtask->cuda_module = NULL;
}

void
__gpuMemFree(GpuContext *gcontext, int cuda_index, CUdeviceptr chunk_addr)
{
        GpuMemHead         *gm_head;
        GpuMemBlock        *gm_block;
        GpuMemChunk        *gm_chunk;
        GpuMemChunk        *gm_prev;
        GpuMemChunk        *gm_next;
        dlist_node         *dnode;
        dlist_iter              iter;
        CUresult                rc;
        int                             index;
。。。。。。
                        rc = cuMemFree(gm_block->block_addr);
                        if (rc != CUDA_SUCCESS)
                                elog(ERROR, "failed on cuMemFree: %s", errorText(rc));


[参考]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值