引言
在人工智能和计算机视觉领域,特征提取是图像与视频分析的核心环节,它关乎后续任务的准确性和效率。借助先进的特征提取技术,我们可以从海量的图像与视频数据中挖掘出有价值的信息,为图像分类、目标检测、视频推荐等应用场景提供有力支撑。本文将围绕图像质量分、人脸属性、年龄、图像多标签、图文视频动态分类打标、视频质量评分以及视频分类打标等特征提取维度展开详细探讨.
文章内容来自:多媒体分析:Python SDK使用说明 文中提供多媒体分析的python接口。
图像特征提取
图像质量评分
图像质量评分是对图像视觉质量的量化评估,其结果通常以一个分数呈现,范围在[0, 100]之间。高质量的图像应具备清晰的细节、准确的色彩以及良好的对比度。在实际应用中,图像质量评分可用于筛选出质量不佳的图片,以提升用户体验或优化存储资源的分配.
图像质量评分的提取过程涉及多个维度的分析。首先,算法会检测图像的模糊程度,通过计算图像的边缘锐度和对比度来评估其清晰度。其次,色彩准确性也是关键指标之一,算法会分析图像的色域、色差以及色彩饱和度等参数,确保图像色彩的真实性和一致性.此外,噪声水平的检测也至关重要,算法会识别图像中的噪点数量和分布情况,从而评估图像的纯净度.
例如,基于深度学习的图像质量评分模型