HDU-1013-Digital Roots

Digital Roots

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 80254    Accepted Submission(s): 25095

Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
 

Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
 

Output
For each integer in the input, output its digital root on a separate line of the output.
 

Sample Input
  
24 39 0
 

Sample Output
  
6 3
 

Source

利用字符串来解决这个题。

#include<cstdio>
#include<cstring>
int main()
{
	char a[10010];
	int k,sum;
	while (scanf("%s",a) && (strlen(a)!=1 || a[0]!='0'))//如果长度为1就已经满足题目; 
	{
		sum = 0;
		k = strlen(a);
		for (int i = 0; i < k; i++)
		{
			sum+=a[i]-'0';
			if(sum>=10)  
				sum=sum/10+sum%10;
		}
		printf("%d\n",sum);
	}
	return 0;
}


 
基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB代码 动态避障路径规划:基于部落竞争与成员合作算法(CTCM)融合动态窗口法DWA的无人机三维动态避障方法研究,MATLAB 融合DWA的青蒿素优化算法(AOA)求解无人机三维动态避障路径规划,MATLAB代码 基于动态环境下多智能体自主避障路径优化的DWA算法研究,MATLAB代码 融合DWA的青蒿素优化算法AOA求解无人机三维动态避障路径规划,MATLAB代码 基于DWA的多智能体动态避障路径规划算法研究,MATLAB代码 融合动态窗口法DWA的粒子群算法PSO求解无人机三维动态避障路径规划研究,MATLAB代码 基于粒子群算法PSO融合动态窗口法DWA的无人机三维动态避障路径规划研究,MATLAB代码 基于ACOSRAR-DWA无人机三维动态避障路径规划,MATLAB代码 基于ACOSRAR-DWA无人机三维动态避障路径规划,MATLAB代码 基于DWA的动态环境下无人机自主避障路径优化,MATLAB代码 基于DWA的动态环境下机器人自主避障路径规划,MATLAB代码 基于城市场景下RRT、ACO、A*算法的无人机三维路径规划方法研究,MATLAB代码 基于城市场景下无人机三维路径规划的导航变量的多目标粒子群优化算法(NMOPSO),MATLAB代码 导航变量的多目标粒子群优化算法(NMOPSO)求解复杂城市场景下无人机三维路径规划,MATLAB代码 原创:5种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),MATLAB代码 原创:4种最新多目标优化算法求解多无人机协同路径规划(多起点多终点,起始点、无人机数、障碍物可自定义),MATLAB代码 高维超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维
HDU-3480 是一个典型的动态规划问题,其题目标题通常为 *Division*,主要涉及二维费用背包问题或优化后的动态规划策略。题目大意是:给定一个整数数组,将其划分为若干个连续的子集,每个子集最多包含 $ m $ 个元素,并且每个子集的最大值与最小值之差不能超过给定的阈值 $ t $,目标是使所有子集的划分代价总和最小。每个子集的代价是该子集最大值与最小值的差值。 ### 动态规划思路 设 $ dp[i] $ 表示前 $ i $ 个元素的最小代价。状态转移方程如下: $$ dp[i] = \min_{j=0}^{i-1} \left( dp[j] + cost(j+1, i) \right) $$ 其中 $ cost(j+1, i) $ 表示从第 $ j+1 $ 到第 $ i $ 个元素构成一个子集的代价,即 $ \max(a[j+1..i]) - \min(a[j+1..i]) $。 为了高效计算 $ cost(j+1, i) $,可以使用滑动窗口或单调队列等数据结构来维护区间最大值与最小值,从而将时间复杂度优化到可接受的范围。 ### 示例代码 以下是一个简化版本的动态规划实现,使用暴力方式计算区间代价,适用于理解问题结构: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 10010; int a[MAXN]; int dp[MAXN]; int main() { int T, n, m; cin >> T; for (int Case = 1; Case <= T; ++Case) { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = INF; int mn = a[i], mx = a[i]; for (int j = i; j >= max(1, i - m + 1); --j) { mn = min(mn, a[j]); mx = max(mx, a[j]); if (mx - mn <= T) { dp[i] = min(dp[i], dp[j - 1] + mx - mn); } } } cout << "Case " << Case << ": " << dp[n] << endl; } return 0; } ``` ### 优化策略 - **单调队列**:可以使用两个单调队列分别维护当前窗口的最大值与最小值,从而将区间代价计算的时间复杂度从 $ O(n^2) $ 降低到 $ O(n) $。 - **斜率优化**:若问题满足特定的决策单调性,可以考虑使用斜率优化技巧进一步加速状态转移过程。 ### 时间复杂度分析 原始暴力解法的时间复杂度为 $ O(n^2) $,在 $ n \leq 10^4 $ 的情况下可能勉强通过。通过单调队列优化后,可以稳定运行于 $ O(n) $ 或 $ O(n \log n) $。 ### 应用场景 HDU-3480 的问题模型可以应用于资源调度、任务划分等场景,尤其适用于需要控制子集内部差异的问题,如图像分块压缩、数据分段处理等[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值