少走弯路:OpenCV、insightface 等多方案人脸推理和识别

本文比较了OpenCV的FaceDetectorYN和CascadeClassifier在脸部检测中的局限性,发现InsightFace的方案效果更好,能提供更准确的面部定位,尽管速度稍慢,且包含年龄和性别信息。作者还展示了InsightFace在标记人脸数据集和跨图片推理中的应用。

脑壳有包又花时间折腾了一下,其实之前也折腾过,主要是新看了一个方法

在下图中查找脸部

第一种方案:

使用了opencv 的cv2.FaceDetectorYN. ,完整代码如下:

import numpy as np
import cv2

img=cv2.imread("00000523.jpg")
# img=cv2.resize(img, new_shape)
faceDetector=cv2.FaceDetectorYN.create("opencv_zoo/models/face_detection_yunet/face_detection_yunet_2023mar.onnx","",(img.shape[1],img.shape[0]))
faces = faceDetector.detect(img)
f = faces[1]
for ps in f:
    x=int(ps[0])
    y=int(ps[1])
    w=int(ps[2])
    h=int(ps[3])
    s=ps[14]
    # print(x,y,w,h,s)
    cv2.rectangle(img, (x, y), (x+w, y+h), (0,0,255), 2)
cv2.namedWindow("d",0);
cv2.resizeWindow("d", int(img.shape[1]/2), int(img.shape[0]/2));
cv2.imshow("d",img)
cv2.waitKey()
# cv2.destoryAllWindows()
cv2.destroyAllWindows()

结果如下:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值