import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_score,roc_auc_score
X_test = np.load('./data/test_feature_1.npy')
Y_train = np.load('./data/train_label_1.npy')
Y_test = np.load('./data/test_label_1.npy')
rf = RandomForestClassifier()
rf.fit(X_train,Y_train)
pre_test = rf.predict(X_test)
auc_score = roc_auc_score(Y_test,pre_test)
pre_score = precision_score(Y_test,pre_test)
print("auc_score,pre_score:",auc_score,pre_score)
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_score,roc_auc_score
'''
导入数据的过程,可以直接读取csv文件,通过X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.33)
方法得到训练集和测试集。参考前面LR的实现代码
'''
X_train = np.load("./data/train_feature_1.npy")X_test = np.load('./data/test_feature_1.npy')
Y_train = np.load('./data/train_label_1.npy')
Y_test = np.load('./data/test_label_1.npy')
rf = RandomForestClassifier()
rf.fit(X_train,Y_train)
pre_test = rf.predict(X_test)
auc_score = roc_auc_score(Y_test,pre_test)
pre_score = precision_score(Y_test,pre_test)
print("auc_score,pre_score:",auc_score,pre_score)
本文介绍了一个使用随机森林分类器进行预测的任务,并展示了如何利用AUC得分和精确度得分来评估模型性能。从加载特征和标签数据开始,通过训练随机森林模型并对测试集进行预测,最终计算并打印了模型的AUC得分和精确度得分。
2万+

被折叠的 条评论
为什么被折叠?



