这是机器学习的第二章第二节:过拟合(Overfitting)和正规化(Regularization)
通过这一节的学习我们将理解并学会如何对Linear regression和Logistic regression的Cost function进行正规化操作,使其达到更优异的效果(able to generalize to new examples more effective)。更新的函数如下:
函数2.2.1:\(\displaystyle J(\theta) = \frac{1}{2}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum_{j=1}^{n}\theta_j^2\)
函数2.2.2:\(\displaystyle \theta_j := \theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}\)
函数2.2.3:\(\displaystyle J(\theta) = -\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\mbox{log}(h_\theta(x{(i)}))-(1-y^{(i)})\mbox{log}(1-h_\theta(x^{(i)}))]+\frac{\lambda}{2m}\sum_{j=1}^{n}\theta_j^2\)
首先来介绍一下欠拟合(Underfitting)和过拟合(Overfitting)的概念,如下图所示:
上图体现了在线性回归模型中,当我们用一个Hypothesis function对training set进行拟合时的三种情况 。当我们选取不同数量的features (\(x\) 时,会呈现出对数据不同程度的拟合情