算法入门(4)——回溯法

转自:http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html

1、概念

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2、基本思想

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3、用回溯法解题的一般步骤:

(1)针对所给问题,确定问题的解空间:
首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
(2)确定结点的扩展搜索规则
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4、算法框架

(1)问题框架

设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。

(2)非递归回溯框架

int a[n],i;   //初始化数组a[];   
i = 1;   
while (i>0(有路可走)   and  (未达到目标))  // 还未回溯到头
{   
    if(i > n)// 搜索到叶结点       
    {   
        搜索到一个解,输出;   
    }   
    else // 处理第i个元素   
    {   
        a[i]第一个可能的值;   
        while(a[i]在不满足约束条件且在搜索空间内)   
        {   
            a[i]下一个可能的值;   
        }   
        if(a[i]在搜索空间内) {   
            标识占用的资源;   
            i = i+1;                  // 扩展下一个结点          else{   
            清理所占的状态空间;         // 回溯 
            i = i –1;                  
        }   
    }
}

(3)递归的算法框架

回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:

int a[n];   
try(int i){   
    if(i>n)   
        输出结果;   
    else{   
        for(j = 下界; j <= 上界; j=j+1)  // 枚举i所有可能的路径   
        {   
            if(fun(j)){               // 满足限界函数和约束条件      
                a[i] = j;   
                ...     // 其他操作   
                try(i+1);
•Alpha-Beta剪枝(Alpha-Beta pruning) 对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。各种各样的这种算法用于所有的强力Othello程序。(同样用于其他棋类游戏,如国际象棋和跳棋)。为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。 •估值 这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。我将要叙述三种不同的估值函数范例。我相信,大多数的Othello程序都可以归结于此。 棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。例如,角在开局阶段和中局开始阶段比终局阶段更重要。采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。 基于行动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。观察表明,许多人类玩者努力获得最大的行动力(可下棋的数目)和潜在行动力(临近对手棋子的空格,见技巧篇)。如果代码有效率的话,可以很快发现,它们提高棋力很多。 基于模版的估值 :正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大行动力和潜在行动力是全局特性,但是他们可以被切割成局部配置,再加在一起。棋子最少化也是如此。这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。 估值合并:一般程序的估值基于许多的参数,如行动力、潜在行动力、余裕手、边角判断、稳定子。但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值