uva11168
题目
就是说有很多的居民点,现要建一条直线跑道,使得每个居民点到跑道的平均距离最小。
思路
求凸包,注意1个点和2个点的情况。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define pi acos (-1)
using namespace std;
typedef long long ll;
const int maxn=10010;
const double INF = 1e30;
int tot;
struct point
{
double x, y;
point (double _x = 0, double _y = 0) : x(_x), y(_y) {}
point operator - (point a) const
{
return point (x-a.x, y-a.y);
}
point operator + (point a) const
{
return point (x+a.x, y+a.y);
}
bool operator < (const point &a) const
{
return x < a.x || (x == a.x && y < a.y);
}
} p[maxn];
const double eps = 1e-10;
int dcmp (double x)
{
if (fabs (x) < eps)
return 0;
else return x < 0 ? -1 : 1;
}
double cross (point a, point b)
{
return a.x*b.y-a.y*b.x;
}
double dot (point a, point b)
{
return a.x*b.x + a.y*b.y;
}
double AngleToRad (double x)
{
return x*pi/180;
}
point rotate (point a, double rad)
{
return point (a.x*cos (rad)-a.y*sin (rad), a.x*sin (rad)+a.y*cos (rad));
}
double ConvexPolygonArea (point *p, int n)
{
double area = 0;
for (int i = 1; i < n-1; i++)
area += cross (p[i]-p[0], p[i+1]-p[0]);
return area/2.0;
}
int n, m;
double l;
point ch[maxn];
int ConvexHull (int n)
{
sort (p, p+n);
int m = 0;
for (int i = 0; i < n; i++)
{
while (m > 1 && cross (ch[m-1]-ch[m-2], p[i]-ch[m-1]) <= 0)
m--;
ch[m++] = p[i];
}
int k = m;
for (int i = n-2; i >= 0; i--)
{
while (m > k && cross (ch[m-1]-ch[m-2], p[i]-ch[m-1]) <= 0)
m--;
ch[m++] = p[i];
}
if (n > 1)
m--;
return m;
}
double dis (point a, point b)
{
double xx = a.x-b.x, yy = a.y-b.y;
return sqrt (xx*xx + yy*yy);
}
int main()
{
int T;
scanf("%d",&T);
int kase=1;
while(T--)
{
tot=0;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
p[tot++]=point(x,y);
}
if(n==2||n==1)
{
printf("Case #%d: 0.000\n",kase++);
continue;
}
m=ConvexHull(tot);
double ans=INF;
ch[m+1]=ch[1];
for(int i=1; i<=m; i++)
{
double temp=0;
double dist=dis(ch[i],ch[i+1]);
for(int j=0; j<tot; j++)
{
temp+=cross (ch[i]-p[j], ch[i+1]-p[j])/dist;
}
ans=min(ans,temp);
}
printf("Case #%d: %.3lf\n",kase++,ans/(n*1.0));
}
return 0;
}