# -*- coding: utf-8 -*-
"""
Created on Thu Sep 7 17:17:22 2017
@author: piaodexin
"""
from sklearn import datasets
from sklearn.svm import LinearSVC
from sklearn import ensemble
from sklearn.model_selection import validation_curve
import matplotlib.pyplot as plt
import numpy as np
data=datasets.load_digits()
x=data.data
y=data.target
estimator_1=LinearSVC()
estimator_2=ensemble.AdaBoostClassifier(LinearSVC(),n_estimators=100,algorithm='SAMME')
estimator_2.get_params().keys()
validation_curve()
n=np.linspace(0.1,1,20)
train_score1,validation_score1=validation_curve(estimator_1,x,y,param_name='C',param_range=n,cv=3)
train_score2,validation_score2=validation_curve(estimator_2,x,y,param_name='base_estimator__C',param_range=n,cv=3)
n=np.linspace(0.1,1,20)
plt.grid()
plt.fill_between(n,train_score1.mean(1)-train_score1.std(1),
train_score1.mean(1)+train_score1.std(1),color='r',alpha=0.1)
plt.fill_between(n,validation_score1.mean(1)-validation_score1.std(1),
validation_score1.mean(1)+validation_score1.std(1),color='g',alpha=0.1)
plt.plot(n,train_score1.mean(1),c='r',label='train score')
plt.plot(n,validation_score1.mean(1),c='g',label='validation score')
plt.legend(loc='best')
plt.show()
plt.grid()
plt.fill_between(n,train_score2.mean(1)-train_score2.std(1),
train_score2.mean(1)+train_score2.std(1),color='r',alpha=0.1)
plt.fill_between(n,validation_score2.mean(1)-validation_score2.std(1),
validation_score2.mean(1)+validation_score2.std(1),color='g',alpha=0.1)
plt.plot(n,train_score2.mean(1),c='r',label='train score')
plt.plot(n,validation_score2.mean(1),c='g',label='validation score')
plt.legend(loc='best')
plt.show()
Python实现Adaboost(decisiontree)
最新推荐文章于 2025-05-23 08:56:06 发布