# -*- coding: utf-8 -*- """ Created on Thu Sep 7 17:17:22 2017 @author: piaodexin """ from sklearn import datasets from sklearn.svm import LinearSVC from sklearn import ensemble from sklearn.model_selection import validation_curve import matplotlib.pyplot as plt import numpy as np data=datasets.load_digits() x=data.data y=data.target estimator_1=LinearSVC() estimator_2=ensemble.AdaBoostClassifier(LinearSVC(),n_estimators=100,algorithm='SAMME') estimator_2.get_params().keys() validation_curve() n=np.linspace(0.1,1,20) train_score1,validation_score1=validation_curve(estimator_1,x,y,param_name='C',param_range=n,cv=3) train_score2,validation_score2=validation_curve(estimator_2,x,y,param_name='base_estimator__C',param_range=n,cv=3) n=np.linspace(0.1,1,20) plt.grid() plt.fill_between(n,train_score1.mean(1)-train_score1.std(1), train_score1.mean(1)+train_score1.std(1),color='r',alpha=0.1) plt.fill_between(n,validation_score1.mean(1)-validation_score1.std(1), validation_score1.mean(1)+validation_score1.std(1),color='g',alpha=0.1) plt.plot(n,train_score1.mean(1),c='r',label='train score') plt.plot(n,validation_score1.mean(1),c='g',label='validation score') plt.legend(loc='best') plt.show() plt.grid() plt.fill_between(n,train_score2.mean(1)-train_score2.std(1), train_score2.mean(1)+train_score2.std(1),color='r',alpha=0.1) plt.fill_between(n,validation_score2.mean(1)-validation_score2.std(1), validation_score2.mean(1)+validation_score2.std(1),color='g',alpha=0.1) plt.plot(n,train_score2.mean(1),c='r',label='train score') plt.plot(n,validation_score2.mean(1),c='g',label='validation score') plt.legend(loc='best') plt.show()
Python实现Adaboost(decisiontree)
最新推荐文章于 2022-08-02 15:46:15 发布