一、直线交点
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u = P-Q;
double t = Cross(w,u)/Cross(v,w);
return P+v*t;
}
二、点到直线的距离
double DistanceToLine(Point P,Point A,PointB){
Vector v1 = B-A,v2 = P-A;
return fabs(Cross(v1,v2))/length(v1);
}
三、 点到线段的距离
double DistanceToSegment(Point P,Point A,Point B){
if(A == B)
return Length(P-A);
Vector v1 = B-A,v2 = P-A,v3 = P-B;
if(dcmp(Dot(v1,v2)) < 0)
return Length(v2);
else if(dcmp(Dot(v1,v3)) > 0)
return Length(v3);
else
return fabs(Cross(v1,v2))/Length(v1);
}
四、点在直线上的投影
Point GetLineProjection(Point P,Point A,Point B){
Vector v = B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
五、线段相交判断
//两线段恰好有一个公共点,且不在任何一条线段的端点。
//线段规范相交的充分条件是:每条线段的两个端点都在另一条线段的两侧
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
double c1 = Cross(a2-a1,b1-a1),c2 = Corss(a2-a1,b2-a1),
c3 = Cross(b2-b1,a1-b1),c4 = Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
}
//如果允许在端点处相交,则还需要判断一个点是否在一条线段上(不包含端点)
bool Onsegment(Point p,Point a1,Point a2){
return dcmp(Cross(a1-p,a2-p)) == 0 && dcmp(Dot(a1-p,a2-p)) < 0;
}
六、多边形面积
//如果是凸边形,可以从第一个顶点出发吧凸边形分成n-2个三角形
//非凸多边形也是一样的原理
double ConvexPolygonArea(Point* p,int n){
double area = 0;
for(int i = 1; i < n-1; i++)
area += Cross(P[i]-p[0],p[i+1]-p[0]);
return area/2;
}