最短路径dijkstra + DFS模版题
//
// main.cpp
// PATA1087
//
// Created by Phoenix on 2018/2/19.
// Copyright © 2018年 Phoenix. All rights reserved.
//
#include <iostream>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
using namespace std;
const int maxn = 210;
const int inf = 1000000000;
int n, k, st, ed, num = 0; //n,k,st,ed,num分别为城市个数,道路数,起点,终点(ROM),代价最小道路数
int G[maxn][maxn];
int d[maxn], c[maxn] = {0}; //c[maxn]为幸福指数
bool vis[maxn] = {false};
vector<int> pre[maxn]; //记录前驱城市号
map<string, int> mp1; //城市名与城市号映射
map<int, string> mp2; //城市号与城市名映射
void dijkstra() { //寻求起点到每个城市的最短路径与前驱节点
fill(d, d + maxn, inf);
d[0] = 0;
for(int i = 0; i < n; i++) {
int u = -1, MIN = inf;
for(int j = 0; j < n; j++) {
if(vis[j] == false && d[j] < MIN) {
u = j;
MIN = d[j];
}
}
if(u == -1) return;
vis[u] = true;
for(int v = 0; v < n; v++) {
if(vis[v] == false && G[u][v] != inf) {
if(d[u] + G[u][v] < d[v]) {
pre[v].clear();
d[v] = d[u] + G[u][v];
pre[v].push_back(u);
} else if(d[u] + G[u][v] == d[v]) {
pre[v].push_back(u);
}
}
}
}
}
vector<int> temp, path;
int optvalue = -1;
void DFS(int v) { //记录最小代价的路径数目,并寻找幸福指数和最大且通过城市最少的路径
if(v == st) {
temp.push_back(v);
num++;
int value = 0;
for(int i = 0; i < temp.size(); i++) { //记录幸福指数和
value += c[temp[i]];
}
if(value > optvalue) { //选择幸福指数和大的路径
optvalue = value;
path = temp;
} else if(value == optvalue) { //如果两条路幸福指数和相同,选择通过城市数目少的路径
if(temp.size() < path.size()) {
path = temp;
}
}
temp.pop_back();
}
temp.push_back(v);
for(int i = 0; i < pre[v].size(); i++) {
DFS(pre[v][i]);
}
temp.pop_back();
}
int main(int argc, const char * argv[]) {
string start, city;
cin >> n >> k >> start;
mp1[start] = 0;
mp2[0] = start;
for(int i = 1; i < n; i++) { //建立城市名与城市号之间的映射
cin >> city >> c[i]; //记录城市的幸福指数
if(city == "ROM") ed = i;
mp1[city] = i;
mp2[i] = city;
}
fill(G[0], G[0] + maxn * maxn, inf);
for(int i = 0; i < k; i++) { //记录代价矩阵
int a, b, dis;
string c1, c2;
cin >> c1 >> c2 >> dis;
a = mp1[c1];
b = mp1[c2];
G[a][b] = G[b][a] = dis;
}
dijkstra();
DFS(ed);
printf("%d %d %d %d\n", num, d[ed], optvalue, optvalue / (path.size() - 1)); //分别输出代价最小路径条数,最小代价,幸福指数和最大值,平均幸福指数最大值
for(int i = path.size() - 1; i >= 0; i--) { //输出从起点到终点的路径
cout << mp2[path[i]];
if(i > 0) printf("->");
}
return 0;
}