Logistic / Sigmoid function
g(x)=11+e−x=ex1+exg(x)=11+e−x=ex1+ex
g(−x)=11+ex=e−x1+e−xg(−x)=11+ex=e−x1+e−x
g(x)+g(−x)=1g(x)+g(−x)=1
g(0)=12g(0)=12
limx→+∞g(x)=1,limx→−∞g(x)=0limx→+∞g(x)=1,limx→−∞g(x)=0
g′(x)=−1(1+e−x)2⋅e−x⋅(−1)=1(1+e−x)2e−xg′(x)=−1(1+e−x)2⋅e−x⋅(−1)=1(1+e−x)2e−x
=11+e−x⋅e−x1+e−x=g(x)g(−x)=g(x)[1−g(x)]=11+e−x⋅e−x1+e−x=g(x)g(−x)=g(x)[1−g(x)]
g′(x)>0,x∈Rg′(x)>0,x∈R
g′′(x)={g(x)[1−g(x)]}′g″(x)={g(x)[1−g(x)]}′
=g′(x)[1−g(x)]+g(x)[1−g(x)]′=g′(x)[1−g(x)]+g(x)[1−g(x)]′
=g′(x)[1−g(x)]−g(x)g′(x)=g′(x)[1−g(x)]−g(x)g′(x)
=g′(x)[1−2g(x)]=g′(x)[1−2g(x)]
=g(x)[1−g(x)][1−2g(x)]=g(x)[1−g(x)][1−2g(x)]
g′′(x)⎧⎩⎨<0,x>0,=0,x=0,>0,x<0,g″(x){<0,x>0,=0,x=0,>0,x<0,
tanh function
tanh(x)=2g(2x)−1=ex−e−xex+e−xtanh(x)=2g(2x)−1=ex−e−xex+e−x
tanh′(x)=2g′(2x)⋅2=4g(2x)[1−g(2x)]=[1+tanh(x)][1−tanh(x)]tanh′(x)=2g′(2x)⋅2=4g(2x)[1−g(2x)]=[1+tanh(x)][1−tanh(x)]
=1−[tanh(x)]2=1−[tanh(x)]2