曲线的定义
原文:
来自维基百科:
In general, a curve is defined through a continuous function γ:I→X from an interval I of the real numbers into a topological space
In general topology, when non-differentiable functions are considered, it is the map γ , which is called a curve, because its image may look very differently from what is commonly called a curve. For example, the image of the Peano curve completely fills the square. On the other hand, when one considers curves defined by a differentiable function (or, at least, a piecewise differentiable function), this is commonly the image of the function which is called a curve.
翻译:
曲线是通过一个从实数区间 I 到拓扑空间
在拓扑空间中,当考虑到不可微的函数的时候,称函数 γ 为曲线,因为它的象集可能看起来与通常所称呼的曲线非常不一样。比如, Peano 曲线的象集完全填满了正方形;另一方面,当仅考虑由可微函数(或至少是分段可微函数)定义的曲线时,通常称函数的象集为曲线。
总结:
曲线是通过一个从实数区间 I 到拓扑空间
弧的定义
原文:
来自维基百科:
In Euclidean geometry, an arc (symbol: ⌒) is a closed segment of a differentiable curve.
翻译:
在欧几里得几何中,弧(符号:⌒)是指可微曲线的封闭的(点集是闭集)一段。
弧长的定义
设平面曲线的参数方程为
{
x=x(t),y=y(t),t∈[T1,T2],
对区间 [T1,T2] 作如下划分:
T1=t0<⋯<tn=T2,
得到这条曲线上顺次排列的 n+1(n∈N,n≥1) 个点 P0,⋯,Pn, 用 Pi−1Pi¯¯¯¯¯¯¯¯¯ 表示连接点 Pi−1 和 Pi 的直线段的长度,那么相应的折线的长度可以表示为 ∑ni=1Pi−1Pi¯¯¯¯¯¯¯¯¯, 取 λ=max1≤i≤nΔti, 若 limλ→0∑ni=1Pi−1Pi¯¯¯¯¯¯¯¯¯ 存在,且极限值与区间 [T1,T2] 的划分无关,则称这条曲线是可求长的,并将此极限值 l=limλ→0∑ni=1Pi−1Pi¯¯¯¯¯¯¯¯¯ 称为该条曲线的弧长。
光滑曲线的定义
若 x′(t),y′(t) 在 [T1,T2] 上连续,且 ∀t∈[T1,T2