接前一篇文章:Linux设备树深度剖析(中)
7. 实战:简单GPIO设备实现
7.1 设备树定义
// my-gpio-device.dts
/dts-v1/;
/plugin/;
/ {
compatible = "my-company,my-board";
fragment@0 {
target = <&gpio>;
__overlay__ {
my_gpio_pins: my_gpio_pins {
pins = "PA10", "PA11";
function = "gpio_out";
};
};
};
fragment@1 {
target-path = "/";
__overlay__ {
my_gpio_device {
compatible = "my-company,my-gpio-device";
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&my_gpio_pins>;
led-gpios = <&pio 0 10 GPIO_ACTIVE_HIGH>, /* PA10 */
<&pio 0 11 GPIO_ACTIVE_HIGH>; /* PA11 */
button-gpios = <&pio 0 12 GPIO_ACTIVE_LOW>;
device-name = "my-custom-device";
clock-frequency = <100000>;
};
};
};
};
7.2 对应驱动程序
// my-gpio-driver.c
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/of.h>
struct my_gpio_data {
struct gpio_desc *leds[2];
struct gpio_desc *button;
int irq;
struct device *dev;
};
static irqreturn_t button_irq_handler(int irq, void *dev_id)
{
struct my_gpio_data *priv = dev_id;
// 读取按钮状态并控制LED
int state = gpiod_get_value(priv->button);
gpiod_set_value(priv->leds[0], state);
gpiod_set_value(priv->leds[1], !state);
dev_info(priv->dev, "Button state: %d\n", state);
return IRQ_HANDLED;
}
static int my_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct my_gpio_data *priv;
int ret, i;
u32 clock_freq;
const char *device_name;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
// 获取LED GPIOs
for (i = 0; i < 2; i++) {
priv->leds[i] = devm_gpiod_get_index(dev, "led", i, GPIOD_OUT_LOW);
if (IS_ERR(priv->leds[i])) {
dev_err(dev, "failed to get LED GPIO %d\n", i);
return PTR_ERR(priv->leds[i]);
}
}
// 获取按钮GPIO
priv->button = devm_gpiod_get(dev, "button", GPIOD_IN);
if (IS_ERR(priv->button)) {
dev_err(dev, "failed to get button GPIO\n");
return PTR_ERR(priv->button);
}
// 获取设备树属性
ret = of_property_read_string(np, "device-name", &device_name);
if (ret)
device_name = "default";
ret = of_property_read_u32(np, "clock-frequency", &clock_freq);
if (ret)
clock_freq = 100000; // 默认值
dev_info(dev, "Device %s probed, clock frequency: %d Hz\n",
device_name, clock_freq);
// 设置中断
priv->irq = gpiod_to_irq(priv->button);
ret = devm_request_irq(dev, priv->irq, button_irq_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"my-gpio-button", priv);
if (ret) {
dev_err(dev, "failed to request IRQ: %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, priv);
return 0;
}
static int my_gpio_remove(struct platform_device *pdev)
{
struct my_gpio_data *priv = platform_get_drvdata(pdev);
// 关闭LEDs
gpiod_set_value(priv->leds[0], 0);
gpiod_set_value(priv->leds[1], 0);
dev_info(&pdev->dev, "Device removed\n");
return 0;
}
static const struct of_device_id my_gpio_of_match[] = {
{ .compatible = "my-company,my-gpio-device" },
{}
};
MODULE_DEVICE_TABLE(of, my_gpio_of_match);
static struct platform_driver my_gpio_driver = {
.probe = my_gpio_probe,
.remove = my_gpio_remove,
.driver = {
.name = "my-gpio-device",
.of_match_table = my_gpio_of_match,
},
};
module_platform_driver(my_gpio_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("Simple GPIO device driver with Device Tree support");
8. 设备树调试与诊断
8.1 常用工具命令
| 工具命令 | 功能描述 | 使用示例 |
|---|---|---|
| dtc | 设备树编译器 | dtc -I dtb -O dts -o output.dts input.dtb |
| fdtdump | 显示DTB内容 | fdtdump input.dtb |
| dtc -O dtb | 编译DTS为DTB | dtc -O dtb -o output.dtb input.dts |
| of_find_node_by_name | 内核调试函数 | 在驱动中查找节点 |
| cat /proc/device-tree | 查看已加载设备树 | find /proc/device-tree -type f |
8.2 调试技巧与最佳实践
# 1. 检查设备树语法
dtc -I dts -O dtb -o /dev/null my-device.dts
# 2. 反编译现有DTB
dtc -I dtb -O dts -o extracted.dts /boot/device_tree.dtb
# 3. 查看内核解析的设备树
ls /proc/device-tree/
cat /proc/device-tree/compatible
# 4. 检查设备是否成功匹配
cat /sys/firmware/devicetree/base/device@1000/compatible
dmesg | grep -i "device tree"
# 5. 调试驱动匹配
echo -n "my-company,my-device" > /sys/bus/platform/drivers/my-driver/new_id
8.3 内核调试配置
// 在驱动中添加调试输出
#define DEBUG
static int my_driver_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
// 打印设备树信息
dev_dbg(&pdev->dev, "Device tree node: %s\n", np->full_name);
// 遍历属性
struct property *prop;
for_each_property_of_node(np, prop) {
dev_dbg(&pdev->dev, "Property: %s\n", prop->name);
}
return 0;
}
9. 设备树设计模式与最佳实践
9.1 设计原则总结

9.2 常见陷阱与解决方案
// 错误示例 - 缺少必要的属性
mydevice@10000000 {
compatible = "my-company,my-device";
// 缺少reg属性!
};
// 正确示例
mydevice@10000000 {
compatible = "my-company,my-device";
reg = <0x10000000 0x1000>;
interrupts = <0 25 4>;
clocks = <&myclock>;
clock-names = "core";
};
10. 总结
Linux设备树是现代嵌入式Linux系统的核心技术之一,它通过将硬件描述与内核代码分离,极大地提高了系统的可移植性和可维护性。
关键要点回顾:
-
设备树实现了硬件描述与内核的彻底分离
-
compatible属性是驱动匹配的核心机制
-
合理使用设备树可以显著提高代码重用性
-
设备树调试需要结合编译工具和内核调试功能
通过掌握设备树的原理和实践技巧,开发者能够更加高效地进行嵌入式Linux系统开发,构建更加灵活和可维护的嵌入式解决方案。

238

被折叠的 条评论
为什么被折叠?



