文章目录
Introduction
Problem Formulation
Now we talk about Hidden Markov Model. Well, what is HMM used for? Consider the following problem:
*Given an unknown observation: O O O, recognize it as one of N N N classes with minimum probability of error. *
So how to define the error and error probability?
Conditional Error: Given O O O, the risk associated with deciding that it is a class i i i event:
R ( S i ∣ O ) = ∑ j = 1 N e i j P ( S j ∣ O ) R(S_{i} | O) = \sum_{j=1}^{N}e_{ij}P(S_{j} | O) R(Si∣O)=j=1∑NeijP(Sj∣O)where P ( S j ∣ O ) P(S_{j} | O) P(Sj∣O) is the probability of that O O O is a class S j S_{j} Sj event and e i j e_{ij} eij is the cost of classifying a class j j j event as a class i i i event. e i j > 0 , e i i = 0 e_{ij}>0, e_{ii}=0 eij>0,eii=0.
Expected Error:
E = ∫ R ( S ( O ) ∣ O ) p ( O ) d O \mathcal{E}=\int R(S(O) | O)p(O)dO E=∫R(S(O)∣O)p(O)dOwhere S ( O ) S(O) S(O) is the decision made on O O O based on a policy. Then the question can be considered as:
How should S ( O ) S(O) S(O) be made to achieve minimum error probability? Or P ( S ( O ) ∣ O ) P(S(O)|O) P(S(O)∣O) is maximized?
Bayes Decision Theory
If we institute the policy: S ( O ) = S i = arg max S j P ( S j ∣ O ) S(O) = S_{i} = \arg\max_{S_{j}}P(S_{j} | O) S(O)=Si=argmaxSjP(Sj∣O) then R ( S ( O ) ∣ O ) = min S j R ( S j ∣ O ) R(S(O)|O)=\min_{S_{j}}R(S_{j} | O) R(S(O)∣O)=minSjR(Sj∣O). It is the so-called Maximum A Posteriori (MAP) decision. But how do we know P ( S j ∣ O ) , i = 1 , 2 , … , M P(S_{j}|O), i=1,2,\dots,M P(Sj∣O),i=1,2,…,M for any O O O ?
Markov Model
States : S = { S 0 , S 1 , S 2 , … , S N } S=\{S_{0}, S_{1},S_{2},\dots, S_{N}\} S={
S0,S1,S2,…,SN}
Transition probabilities : P ( q t = S i ∣ q t − 1 = S j ) P(q_{t}=S_{i} |q_{t-1}=S_{j}) P(qt=Si∣qt−1=Sj)
Markov Assumption:
P ( q t = S i ∣ q t − 1 = S j , q t − 1 = S k , … ) = P ( q t = S i ∣ q t − 1 = S j ) = a j i , a j i ≥ 0 , ∑ i = 1 N a j i = 1 , ∀ j P(q_{t}=S_{i} |q_{t-1}=S_{j}, q_{t-1}=S_{k},\dots)=P(q_{t}=S_{i} |q_{t-1}=S_{j})=a_{ji}, \quad a_{ji}\geq 0, \sum_{i=1}^{N}a_{ji}=1,\forall j P(qt=Si∣qt−1=Sj,qt−1=Sk,…)=P(qt=