题目来源:中国大学MOOC-陈越、何钦铭-数据结构-2018春
作者: 陈越
单位: 浙江大学
问题描述:
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
解答:
存储数据的结构均选择数组,因为完全二叉树用数组更好做(可直接利用性质)。
首先,因为搜索二叉树左子节点<根<右子节点,发现若给n个数排好序,则这个序列是完全搜索二叉树的中序遍历。要建立这棵树,光知道中序遍历是不够的,因此引入完全二叉树的性质,就是给每个节点按1-N编号,则设根节点为i,左节点为2i,右子节点为2i+1,这样就可以从根节点1开始中序遍历完全二叉搜索树,在遍历的同时建树。中序遍历是访问节点时cout,那么现在需要建树,我们需要给这个节点赋一个值,这个值就是排好序的n个数依次取出即可。pos变量就是模拟现在取到哪个数了,因此要设置为全局。
注意递归建树的return条件是发现根的值大于N时返回。然后因为完全二叉树编号即是按层从上到下从左到右编号,所以输出直接按序输出Tree数组里的N个数即可。
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=1001;
int N;
int input[maxn],tree[maxn],pos=0;
void inputData()
{
cin>>N;
for(int i=0;i<N;i++)
{
cin>>input[i];
}
}
void buildTree(int root)
{
int leftChild=2*root,rightChild=2*root+1;
if(root>N)
return;
buildTree(leftChild);
tree[root]=input[pos++];
buildTree(rightChild);
}
void output()
{
for(int i=1;i<=N;i++)
{
if(i!=N)
cout<<tree[i]<<" ";
else
cout<<tree[i];
}
}
int main()
{
inputData();
sort(input,input+N);
buildTree(1);
output();
return 0;
}