题意/Description:
Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.
读入/Input:
Line 1: Two space-separated integers, N and M
Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
输出/Output:
Line 1: A single integer that is the number of cows who are considered popular by every other cow.
题解/solution:
先跑一遍taijian算法。那么出度为0的强连通分量代表的就是受其他奶牛欢迎的,但是如果出度为0的强连通分量的个数大于1.那么则无解。因为将至少有两个分量里的奶牛互相不喜欢。所以我们的算法就是如果出度为0的强连通分量的个数是1.那么我们算出这里面点的个数就是最后的答案。
代码/Code:
const
maxE=500001;
maxV=50001;
type
arr=record
x,y,w,next:longint;
end;
Var
n,m,t,ans,t1:longint;
tu:array [0..maxE] of arr;
v:array [0..maxV] of Boolean;
ls,a,ru,cu,low,dfn,f:array [0..maxV] of longint;
procedure dfs(o:longint);
Var
i,j,k:longint;
begin
inc(t);
f[t]:=o;
v[o]:=true;
inc(t1);
low[o]:=t1;
dfn[o]:=t1;
i:=ls[o];
while i<>0 do
with tu[i] do
begin
if dfn[y]=0 then
begin
dfs(y);
if low[o]>low[y] then low[o]:=low[y];
end else
if (low[o]>dfn[y]) and (v[y]) then low[o]:=dfn[y];
i:=next;
end;
if low[o]=dfn[o]then
begin
ans:=ans+1;
repeat
j:=f[t];
t:=t-1;
a[j]:=ans;
v[j]:=false;
until j=o;
end;
end;
procedure init;
var
i,k:longint;
begin
readln(n,m);
k:=0;
ans:=0;
for i:=1 to m do
with tu[i] do
begin
readln(x,y);
next:=ls[x];
ls[x]:=i;
end;
for i:=1 to n do
if a[i]=0 then dfs(i);
end;
procedure main;
var
i,j:longint;
begin
for i:=1 to n do
begin
j:=ls[i];
while j<>0 do
with tu[j] do
begin
if a[x]<>a[y]
then
begin
cu[a[x]]:=cu[a[x]]+1;
ru[a[y]]:=ru[a[y]]+1;
end;
j:=next;
end;
end;
end;
procedure print;
var
i,o,k:longint;
begin
k:=0;
for i:=1 to ans do
if cu[i]=0 then k:=k+1;
if k<>1 then
begin
write(0);
halt;
end;
k:=0;
for i:=1 to ans do
if cu[i]=0 then k:=i;
o:=0;
for i:=1 to n do
if a[i]=k then o:=o+1;
write(o);
end;
begin
init;
main;
print;
end.
本文介绍了一种使用Tarjan算法解决奶牛人气排名的问题。在一个包含N头奶牛的群体中,通过M对奶牛之间的评价关系,计算出被所有其他奶牛认为最受欢迎的奶牛数量。文章详细阐述了算法流程及其实现代码。

4万+

被折叠的 条评论
为什么被折叠?



