在上一节CubeMap的基础上新增了一个纹理贴图实现多重纹理。
// MultiTexture.cpp
// OpenGL SuperBible
// Demonstrates applying a cube map to an object (sphere)
// simultaneously with a "tarnish" texture.
// Program by Richard S. Wright Jr.
#include // OpenGL toolkit
#include
#include
#include
#include
#include
#include
#include
#ifdef __APPLE__
#include
#else
#define FREEGLUT_STATIC
#include
#endif
GLFrame viewFrame;
GLFrustum viewFrustum;
GLTriangleBatch sphereBatch;
GLBatch cubeBatch;
GLMatrixStack modelViewMatrix;
GLMatrixStack projectionMatrix;
GLGeometryTransform transformPipeline;
GLuint cubeTexture;
GLuint tarnishTexture;
GLint reflectionShader;
GLint skyBoxShader;
GLint locMVPReflect, locMVReflect, locNormalReflect, locInvertedCamera;
GLint locCubeMap, locTarnishMap;
GLint locMVPSkyBox;
// Six sides of a cube map
const char *szCubeFaces[6] = { "pos_x.tga", "neg_x.tga", "pos_y.tga", "neg_y.tga", "pos_z.tga", "neg_z.tga" };
GLenum cube[6] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z };
//////////////////////////////////////////////////////////////////
// This function does any needed initialization on the rendering
// context.
void SetupRC()
{
GLbyte *pBytes;
GLint iWidth, iHeight, iComponents;
GLenum eFormat;
int i;
// Cull backs of polygons
glCullFace(GL_BACK);
glFrontFace(GL_CCW);
glEnable(GL_DEPTH_TEST);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// Load the tarnish texture
glGenTextures(1, &tarnishTexture);
glBindTexture(GL_TEXTURE_2D, tarnishTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
pBytes = gltReadTGABits("tarnish.tga", &iWidth, &iHeight, &iComponents, &eFormat);
glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight, 0, eFormat, GL_UNSIGNED_BYTE, pBytes);
free(pBytes);
glGenerateMipmap(GL_TEXTURE_2D);
// Load the cube map
glGenTextures(1, &cubeTexture);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture);
// Set up texture maps
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
// Load Cube Map images
for(i = 0; i < 6; i++)
{
// Load this texture map
pBytes = gltReadTGABits(szCubeFaces[i], &iWidth, &iHeight, &iComponents, &eFormat);
glTexImage2D(cube[i], 0, iComponents, iWidth, iHeight, 0, eFormat, GL_UNSIGNED_BYTE, pBytes);
free(pBytes);
}
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
viewFrame.MoveForward(-4.0f);
gltMakeSphere(sphereBatch, 1.0f, 52, 26);
gltMakeCube(cubeBatch, 20.0f);
reflectionShader = gltLoadShaderPairWithAttributes("Reflection.vp", "Reflection.fp", 3,
GLT_ATTRIBUTE_VERTEX, "vVertex",
GLT_ATTRIBUTE_NORMAL, "vNormal",
GLT_ATTRIBUTE_TEXTURE0, "vTexCoords");
locMVPReflect = glGetUniformLocation(reflectionShader, "mvpMatrix");
locMVReflect = glGetUniformLocation(reflectionShader, "mvMatrix");
locNormalReflect = glGetUniformLocation(reflectionShader, "normalMatrix");
locInvertedCamera = glGetUniformLocation(reflectionShader, "mInverseCamera");
locCubeMap = glGetUniformLocation(reflectionShader, "cubeMap");
locTarnishMap = glGetUniformLocation(reflectionShader, "tarnishMap");
skyBoxShader = gltLoadShaderPairWithAttributes("SkyBox.vp", "SkyBox.fp", 2,
GLT_ATTRIBUTE_VERTEX, "vVertex",
GLT_ATTRIBUTE_NORMAL, "vNormal");
locMVPSkyBox = glGetUniformLocation(skyBoxShader, "mvpMatrix");
// Set textures to their texture units
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, tarnishTexture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture);
}
void ShutdownRC(void)
{
glDeleteTextures(1, &cubeTexture);
}
// Called to draw scene
void RenderScene(void)
{
// Clear the window
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
M3DMatrix44f mCamera;
M3DMatrix44f mCameraRotOnly;
M3DMatrix44f mInverseCamera;
viewFrame.GetCameraMatrix(mCamera, false);
viewFrame.GetCameraMatrix(mCameraRotOnly, true);
m3dInvertMatrix44(mInverseCamera, mCameraRotOnly);
modelViewMatrix.PushMatrix();
// Draw the sphere
modelViewMatrix.MultMatrix(mCamera);
glUseProgram(reflectionShader);
glUniformMatrix4fv(locMVPReflect, 1, GL_FALSE, transformPipeline.GetModelViewProjectionMatrix());
glUniformMatrix4fv(locMVReflect, 1, GL_FALSE, transformPipeline.GetModelViewMatrix());
glUniformMatrix3fv(locNormalReflect, 1, GL_FALSE, transformPipeline.GetNormalMatrix());
glUniformMatrix4fv(locInvertedCamera, 1, GL_FALSE, mInverseCamera);
glUniform1i(locCubeMap, 0);
glUniform1i(locTarnishMap, 1);
glEnable(GL_CULL_FACE);
sphereBatch.Draw();
glDisable(GL_CULL_FACE);
modelViewMatrix.PopMatrix();
modelViewMatrix.PushMatrix();
modelViewMatrix.MultMatrix(mCameraRotOnly);
glUseProgram(skyBoxShader);
glUniformMatrix4fv(locMVPSkyBox, 1, GL_FALSE, transformPipeline.GetModelViewProjectionMatrix());
cubeBatch.Draw();
modelViewMatrix.PopMatrix();
// Do the buffer Swap
glutSwapBuffers();
}
// Respond to arrow keys by moving the camera frame of reference
void SpecialKeys(int key, int x, int y)
{
if(key == GLUT_KEY_UP)
viewFrame.MoveForward(0.1f);
if(key == GLUT_KEY_DOWN)
viewFrame.MoveForward(-0.1f);
if(key == GLUT_KEY_LEFT)
viewFrame.RotateLocalY(0.1);
if(key == GLUT_KEY_RIGHT)
viewFrame.RotateLocalY(-0.1);
// Refresh the Window
glutPostRedisplay();
}
void ChangeSize(int w, int h)
{
// Prevent a divide by zero
if(h == 0)
h = 1;
// Set Viewport to window dimensions
glViewport(0, 0, w, h);
viewFrustum.SetPerspective(35.0f, float(w)/float(h), 1.0f, 1000.0f);
projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());
transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);
}
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(800,600);
glutCreateWindow("OpenGL MultiTexture");
glutReshapeFunc(ChangeSize);
glutDisplayFunc(RenderScene);
glutSpecialFunc(SpecialKeys);
GLenum err = glewInit();
if (GLEW_OK != err) {
fprintf(stderr, "GLEW Error: %s\n", glewGetErrorString(err));
return 1;
}
SetupRC();
glutMainLoop();
ShutdownRC();
return 0;
}
// Reflection Shader
// Vertex Shader
// Richard S. Wright Jr.
// OpenGL SuperBible
#version 130
// Incoming per vertex... position and normal
in vec4 vVertex;
in vec3 vNormal;
in vec2 vTexCoords;
uniform mat4 mvpMatrix;
uniform mat4 mvMatrix;
uniform mat3 normalMatrix;
uniform mat4 mInverseCamera;
// Texture coordinate to fragment program
smooth out vec3 vVaryingTexCoord;
smooth out vec2 vTarnishCoords;
void main(void)
{
// Normal in Eye Space
vec3 vEyeNormal = normalMatrix * vNormal;
// Vertex position in Eye Space
vec4 vVert4 = mvMatrix * vVertex;
vec3 vEyeVertex = normalize(vVert4.xyz / vVert4.w);
// Get reflected vector
vec4 vCoords = vec4(reflect(vEyeVertex, vEyeNormal), 1.0);
// Rotate by flipped camera
vCoords = mInverseCamera * vCoords;
vVaryingTexCoord.xyz = normalize(vCoords.xyz);
vTarnishCoords = vTexCoords.st;
// Don't forget to transform the geometry!
gl_Position = mvpMatrix * vVertex;
}
// Skybox Shader
// Fragment Shader
// Richard S. Wright Jr.
// OpenGL SuperBible
#version 130
out vec4 vFragColor;
uniform samplerCube cubeMap;
varying vec3 vVaryingTexCoord;
void main(void)
{
vFragColor = texture(cubeMap, vVaryingTexCoord);
}
// Reflection Shader
// Fragment Shader
// Richard S. Wright Jr.
// OpenGL SuperBible
#version 130
out vec4 vFragColor;
uniform samplerCube cubeMap;
uniform sampler2D tarnishMap;
smooth in vec3 vVaryingTexCoord;
smooth in vec2 vTarnishCoords;
void main(void)
{
vFragColor = texture(cubeMap, vVaryingTexCoord.stp);
vFragColor *= texture(tarnishMap, vTarnishCoords);
}
// Skybox Shader
// Vertex Shader
// Richard S. Wright Jr.
// OpenGL SuperBible
#version 130
// Incoming per vertex... just the position
in vec4 vVertex;
uniform mat4 mvpMatrix; // Transformation matrix
// Texture Coordinate to fragment program
varying vec3 vVaryingTexCoord;
void main(void)
{
// Pass on the texture coordinates
vVaryingTexCoord = normalize(vVertex.xyz);
// Don't forget to transform the geometry!
gl_Position = mvpMatrix * vVertex;
}
一、多重纹理基础
在之前的学习的纹理贴图都是将一个单独的纹理加载到纹理对象上。当我们要使用这个纹理时,将他绑定到选定的纹理纹理对象上,然后将片段着色器的单个统一值设置为0。为什么是0呢?因为0是我们将要绑定到纹理单元的索引。OpenGL允许我们将独立的纹理对象绑定到一些可用的纹理单元上,从而提供了将两个或更多纹理同时应用到几何图形。可以对实现进行查询,来查看支持的纹理单元数量。如下:
GLint iUnits;glGenIntegerv(GL_MAX_TEXTURE_UNITS,&Units);默认情况下,第一个纹理单元为活动的纹理单元。所有纹理绑定操作都会影响当前活动的纹理单元。我们可以通过调用以纹理单元标识为变量的glActiveTexture来改变当前纹理单元。例如,要切换到第二个纹理单元并将它绑定到指定纹理对象上:
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D,textureID);
二、多重纹理坐标
有两个函数可以提供纹理坐标。
1、CopyTexCoordData2f,它的速度是最快的,因为它会一次复制整个一组纹理坐标。
2、使用较慢的每次一个顶点的接口,与立即模式类似。可以通过两种方式指定一个二维纹理坐标,每次指定一个。
此次的源码是在上次学习的源码基础上新增了多重纹理的应用,所以只着重解析多重纹理部分源码。
三、Client程序解析
MultiTexture.cpp
1、全局变量
//声明两个纹理对象标识,对应着色器程序的统一值
GLint locCubeMap, locTarnishMap;
2、函数解析
1)void SetupRC()
.....
//生成纹理对象
glGenTextures(1, &tarnishTexture);
//绑定纹理对象
glBindTexture(GL_TEXTURE_2D, tarnishTexture);//设置纹理对象的过滤和环绕模式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
//加载纹理贴图,指定宽、高、新的缓冲区和文件格式
pBytes = gltReadTGABits("tarnish.tga", &iWidth, &iHeight, &iComponents, &eFormat);
//从缓冲区载入纹理数据,一旦载入,纹理就会成为当前纹理状态(即活动的)
glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight, 0, eFormat, GL_UNSIGNED_BYTE, pBytes);
//释放内存
free(pBytes);
//生成Mip贴图层
glGenerateMipmap(GL_TEXTURE_2D);
...............
//得到着色器程序中的两个贴图的统一值,赋值给纹理对象标识
locCubeMap = glGetUniformLocation(reflectionShader, "cubeMap");
locTarnishMap = glGetUniformLocation(reflectionShader, "tarnishMap");
.............
//切换纹理单元。将两个纹理进行绑定,每个纹理都会绑定到自己的纹理单元上
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, tarnishTexture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture);
2)void RenderScene(void)
.........
//设置着色器程序纹理对象的统一值
glUniform1i(locCubeMap, 0);
glUniform1i(locTarnishMap, 1);
注:多重纹理的源码是在上一节的源码基础上新添,所以略去了全部的解析。可回顾上一节。下面着重解析着色器程序。
四、着色器程序解析
与CubeMap的源码基本一致,这里解析一下新增的代码。
Reflection.vp
// 设置第二个纹理的纹理坐标
in vec2 vTexCoords;
vTarnishCoords = vTexCoords.st;
Reflection.fp
//采样器,将要采样的纹理所绑定的纹理单元
uniform sampler2D tarnishMap;
//设置输出颜色:立方体纹理采样得到的颜色再乘等于第二个纹理采样得到的颜色值
vFragColor = texture(cubeMap, vVaryingTexCoord.stp);
vFragColor *= texture(tarnishMap, vTarnishCoords);
五、小结
此多重纹理的源码示例是在上一节的CubeMap的示例的基础上新增了多重纹理的渲染效果。需要注意的是,在客户端程序中第二个纹理对象的生成和绑定,得到着色器程序中的纹理采样器的统一值,再进行绑定设置纹理单元,在着色器程序中,得到要进行渲染的输出颜色值。

本文介绍如何在OpenGL中实现多重纹理渲染。通过加载两个纹理并分别绑定到不同的纹理单元,利用着色器程序混合两个纹理的颜色,实现丰富的视觉效果。
1万+

被折叠的 条评论
为什么被折叠?



