36、多层感知器:训练、优化与泛化策略

多层感知器:训练、优化与泛化策略

1. 多层感知器训练问题概述

多层感知器在误差函数中容易形成狭窄的沟壑,这会降低训练过程的速度。为了更有效地训练多层感知器,我们需要关注输出单元与目标值、权重初始化、输入预处理、共享权重等方面,同时要重视模型的泛化能力。

2. 输出单元与目标值

多层感知器的实际应用大致可分为两类,不同类型对应不同的输出单元和目标值设置:
| 应用类型 | 目标输出值 | 输出单元类型 | 目标值选择 | 原因 |
| — | — | — | — | — |
| 非线性回归 | 连续值 | 线性单元 | 无特殊限制 | 希望输出能覆盖所有可能的目标值范围,线性单元更合适 |
| 分类与模式识别 | 二进制值 | 具有Sigmoid非线性的单元 | 接近但不等于Sigmoid渐近值(如逻辑函数用0.05和0.95) | 避免权重无限增长,加快训练速度 |

3. 权重初始化

在开始反向传播算法之前,需要对网络的权重进行初始化。不能将所有权重初始化为零,因为这样会导致梯度分量为零,无法有效训练。通常的做法是将权重初始化为在对称区间 [-a, a] 内均匀分布的随机值。

为避免单元饱和影响学习速度,参数 a 可根据单元的输入数量 fi 进行调整,公式为 ai = k / (fi)^(1/2) 。对于 k 的选择,不同人有不同偏好:
- 有些人喜欢将 k 设得很小(如0.01 -

【评估多目标跟踪方法】9个高度敏捷目标在编队中的轨迹和测量研究(Matlab代码实现)内容概要:本文围绕“评估多目标跟踪方法”,重点研究9个高度敏捷目标在编队飞行中的轨迹生成测量过程,并提供完整的Matlab代码实现。文中详细模拟了目标的动态行为、运动约束及编队结构,通过仿真获取目标的状态信息观测数据,用于验证和比较不同多目标跟踪算法的性能。研究内容涵盖轨迹建模、噪声处理、传感器测量模拟以及数据可视化等关键技术环节,旨在为雷达、无人机编队、自动驾驶等领域的多目标跟踪系统提供可复现的测试基准。; 适合人群:具备一定Matlab编程基础,从事控制工程、自动化、航空航天、智能交通或人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多目标跟踪算法(如卡尔曼滤波、粒子滤波、GM-CPHD等)的性能评估对比实验;②作为无人机编队、空中交通监控等应用场景下的轨迹仿真传感器数据分析的教学研究平台;③支持对高度机动目标在复杂编队下的可观测性跟踪精度进行深入分析。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注轨迹生成逻辑测量模型构建部分,可通过修改目标数量、运动参数或噪声水平来拓展实验场景,进一步提升对多目标跟踪系统设计评估的理解。
本软件实现了一种基于时域有限差分法结合时间反转算法的微波成像技术,旨在应用于乳腺癌的早期筛查。其核心流程分为三个主要步骤:数据采集、信号处理三维可视化。 首先,用户需分别执行“WithTumor.m”“WithoutTumor.m”两个脚本。这两个程序将在模拟生成的三维生物组织环境中进行电磁仿真,分别采集包含肿瘤模型不包含肿瘤模型的场景下的原始场数据。所获取的数据将自动存储为“withtumor.mat”“withouttumor.mat”两个数据文件。 随后,运行主算法脚本“TR.m”。该程序将加载上述两组数据,并实施时间反转算法。算法的具体过程是:提取两组仿真信号之间的差异成分,通过一组专门设计的数字滤波器对差异信号进行增强净化处理,随后在数值模拟的同一组织环境中进行时间反向的电磁波传播计算。 在算法迭代计算过程中,系统会按预设的周期(每n次迭代)自动生成并显示三维模拟空间内特定二维切面的电场强度分布图。通过对比观察这些动态更新的二维场分布图像,用户有望直观地识别出由肿瘤组织引起的异常电磁散射特征,从而实现病灶的视觉定位。 关于软件的具体配置要求、参数设置方法以及更深入的技术细节,请参阅软件包内附的说明文档。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值