8.3
STINGY SAT is the following problem: given a set of clauses(each a disjunction of literals) and an integer k, find a satisfying assignment in which at most k variables are true, if such an assignment exists. Prove tnat STINGY SAT is NP-complete.
解:
显然STINGY SAT的解可以在多项式时间内验证的,所以是一个NP问题。若将k设为所有变量的总个数,可以轻易将SAT归约到STINGY SAT,所以STINGY SAT是NP完全问题。
8.8
In the EXACT 4SAT problem, the input is a set of clauses, each of which is a disjunction of exact four literals, and such that each variable occurs at most once in each clause. The goal is to find a satisfying assignment, if one exists Prove that EXACT 4SAT is NP-complete.
解:
由于EXACT 4SAT的解可以在多项式时间内验证的,所以是一个NP问题。对于一个3SAT,若某个子句中包含了一项多次,可以缩减为一次;若同时包含了某一变量的肯定和否定,可以将这个变量去掉。然后,再在每句中添加一些哑变量(没用的辅助变量),这样就可以将一个子句中的数目扩充到4个。则3SAT实例转化了一个EXACT 4SAT问题,所以EXACT 4SAT是NP-complete问题。