KMP

本文深入讲解KMP算法的工作原理及实现细节,包括如何利用预处理提高字符串匹配效率,以及算法的时间复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。

     i = 1 2 3 4 5 6 7 8 9 ……
     A = a b a b a b a a b a b …
     B = a b a b a c b
     j =   1 2 3 4 5 6 7

     此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

     i = 1 2 3 4 5 6 7 8 9 ……
     A = a b a b a b a a b a b …
     B =      a b a b a c b
     j =         1 2 3 4 5 6 7

     从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
     再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

     i = 1 2 3 4 5 6 7 8 9 ……
     A = a b a b a b a a b a b …
     B =      a b a b a c b
     j =     1 2 3 4 5 6 7

     由于P[5]=3,因此新的j=3:

     i = 1 2 3 4 5 6 7 8 9 ……
     A = a b a b a b a a b a b …
     B =         a b a b a c b
     j =         1 2 3 4 5 6 7

     这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

     i = 1 2 3 4 5 6 7 8 9 ……
     A = a b a b a b a a b a b …
     B =             a b a b a c b
     j =            1 2 3 4 5 6 7

     现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

     i = 1 2 3 4 5 6 7 8 9 ……
     A = a b a b a b a a b a b …
     B =               a b a b a c b
     j =             0 1 2 3 4 5 6 7

     终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
     这个过程的代码很短(真的很短),我们在这里给出:

程序代码
j:=0;
for i:=1 to n do
begin
   while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
   if B[j+1]=A[i] then j:=j+1;
   if j=m then
   begin
       writeln('Pattern occurs with shift ',i-m);
       j:=P[j];
   end;
end;



     最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
     这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

     现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
     为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
     预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],...,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

         1 2 3 4 5 6 7
     B = a b a b a c b
     P = 0 0 1 2 3 ?

     P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]和B[5]都是"a"。既然P[6]不能由P [5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
     怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:

程序代码
P[1]:=0;
j:=0;
for i:=2 to m do
begin
   while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
   if B[j+1]=B[i] then j:=j+1;
   P[i]:=j;
end;



     最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

     串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。

04-27
### KMP算法的实现 KMP算法的核心在于通过构建前缀表来减少不必要的字符比较,从而提高字符串匹配的效率。以下是其实现细节: #### 构建前缀表 前缀表记录了模式串中每个位置对应的最长相等前后缀长度。对于给定的模式串`pattern`,可以通过以下方式计算其前缀表。 ```python def compute_prefix_table(pattern): n = len(pattern) prefix_table = [0] * n # 初始化前缀表 j = 0 # 表示当前匹配到的位置 for i in range(1, n): # 遍历模式串 while j > 0 and pattern[i] != pattern[j]: j = prefix_table[j - 1] if pattern[i] == pattern[j]: j += 1 prefix_table[i] = j # 记录当前位置的最大公共前后缀长度 return prefix_table ``` 此部分实现了如何利用模式串自身的特性跳过不必要匹配的过程[^2]。 #### 字符串匹配过程 基于已构建好的前缀表,可以快速完成目标字符串与模式串之间的匹配操作。 ```python def kmp_search(text, pattern): m = len(pattern) n = len(text) prefix_table = compute_prefix_table(pattern) # 获取前缀表 matches = [] # 存储匹配起始索引的结果列表 j = 0 # 当前匹配到的模式串位置 for i in range(n): # 遍历文本串 while j > 0 and text[i] != pattern[j]: j = prefix_table[j - 1] if text[i] == pattern[j]: j += 1 if j == m: # 如果完全匹配,则记录结果 matches.append(i - m + 1) j = prefix_table[j - 1] # 继续寻找下一个可能的匹配点 return matches ``` 以上代码展示了完整的KMP算法逻辑及其执行流程[^3]。 --- ### KMP算法的应用 #### 文本编辑器中的查找功能 在现代文本编辑器中,当用户输入一段文字并希望查询某个子串是否存在时,通常会调用高效的字符串匹配算法。由于KMP算法的时间复杂度为O(m+n),其中m为目标文本长度,n为模式串长度,在处理大规模数据集时表现尤为突出[^1]。 例如,假设有一个大型文档文件需要频繁检索某些关键词,采用KMP算法能够显著提升性能。 #### 生物信息学领域 DNA序列分析是一个典型的例子,科学家们经常面对海量基因组数据,而这些数据本质上就是由字母A、C、G、T组成的超长字符串。因此,使用像KMP这样的高级字符串匹配技术可以帮助研究人员更加快捷地定位感兴趣的片段。 此外,在网络入侵检测系统(IDS)、反病毒软件等领域也广泛运用到了类似的原理来进行恶意代码签名扫描等工作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值