需要一定的keras基础,然后还请对着代码和图认真的看一看实现过程,其实不算复杂
文章来源与keras中文翻译网站,想查看具体内容还请移步到这里该教程里面有更为详细的解释,我只是搬运并记录了一下。
- 泛型模型实例:
- code:
from keras.layers import Input, Embedding, LSTM, Dense, merge
from keras.models import Model
# headline input: meant to receive sequences of 100 integers, between 1 and 10000.
# note that we can name any layer by passing it a "name" argument.
main_input = Input(shape=(100,), dtype='int32', name='main_input')
# this embedding layer will encode the input sequence
# into a sequence of dense 512-dimensional vectors.
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)
# a LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)
auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)
auxiliary_input = Input(shape=(5,), name='aux_input')
x = merge([lstm_out, auxiliary_input], mode='concat')
# we stack a deep fully-connected network on top
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
# and finally we add the main logistic regression layer
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(input=[main_input, auxiliary_input], output=[main_output, auxiliary_output])
model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])
model.fit([headline_data, additional_data], [labels, labels],
nb_epoch=50, batch_size=32)