异步通知,中断 例子(AM335X)

Author:DriverMonkey

Mail:bookworepeng@Hotmail.com

Phone:13410905075

QQ:196568501

驱动程序:

#include <linux/kernel.h>  
#include <linux/module.h>  
#include <linux/cdev.h>  
#include <linux/fs.h>  
#include <linux/device.h>  
#include <linux/syscalls.h>
#include <linux/interrupt.h> 
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/uaccess.h>  
#include <linux/string.h> 

#include <mach/gpio.h>
#include <mach/irqs.h>

#define GPIO_TO_PIN(bank, gpio) (32 * (bank) + (gpio))


struct fpga_key_dev  
{  
    struct cdev cdev;  
    dev_t devno;  
    char test[20];
    struct class *fpga_key_class; 
	struct fasync_struct *async_queue;

	int message_cdev_open;
};  
struct fpga_key_dev fpga_key_dev;  

irqreturn_t irq_handler(int irqno, void *dev_id)

{
	struct fpga_key_dev *dev = &fpga_key_dev;
	static int count = 0;

	printk("fpga key down = %d\n", count);

	if (dev->async_queue)
		kill_fasync(&dev->async_queue, SIGIO, POLL_IN); 

	return IRQ_HANDLED;
}

static int fpga_key_open(struct inode *node, struct file *fd)  
{  
	struct fpga_key_dev *dev;
	
	printk("fpga_key_open()++\n");  

	printk("node->i_cdev = %x\n", (unsigned int)node->i_cdev);
	dev = container_of(node->i_cdev, struct fpga_key_dev, cdev);
	printk("dev->cdev = %x\n", (unsigned int)&dev->cdev);
	printk("dev = %x\n", (unsigned int)dev);
	
	if (!dev->message_cdev_open) {
		dev->message_cdev_open = 1;
		fd->private_data = dev;
	}
	else{
		return -EFAULT;
	}
	
	printk("test[20] = %s\n",dev->test);
	
    printk("fpga_key_open()--\n");  
  
    return 0;  
}   
  
static ssize_t fpga_key_write(struct file *fd, const char __user *buf, size_t len, loff_t *ptr)  
{  
    char temp_buffer [20];  
    int print_size = 0;  
      
    printk("fpga_key_wirte()++\n");  
    if(len > 20)  
        print_size = 20;  
    else  
        print_size = len;  
    printk("print_size = %d; len = %d\n", print_size, len);  
    if(copy_from_user(temp_buffer, buf, print_size))  
        return -EFAULT;  
	  
    printk("writing data:%s", temp_buffer);  
      
    printk("fpga_key_wirte()--\n");  
  
    return print_size;  
}  
static ssize_t fpga_key_read(struct file *fd, char __user *buf, size_t len, loff_t *ptr)  
{  
      char *temp_buffer = "Hello fpga_key_read !\n";  
      int print_size = 0;  
        
    printk("fpga_key_read()++\n");  
      
    if(len > strnlen(temp_buffer,20))  
        print_size = strnlen(temp_buffer,20);  
    else  
        print_size = len;  
    printk("print_size = %d; len = %d\n", print_size, len);  
    if(copy_to_user(buf, temp_buffer, print_size))  
        return -EFAULT;  
    printk("%s", temp_buffer);  
    printk("fpga_key_read()--\n");  
  
    return print_size;  
}  

static int fpga_key_fasync(int fd, struct file *filp, int mode)
{
	struct fpga_key_dev		*dev = filp->private_data;

	printk("fpga_key_fasync()++\n");
	
	fasync_helper(fd, filp, mode, &dev->async_queue); 

	printk("fpga_key_fasync()--\n");
	
	return 0;
}

static int fpga_key_release(struct inode *node, struct file *fd)  
{  
	struct fpga_key_dev *dev = fd->private_data;
	
	printk("fpga_key_release()++\n"); 

	dev->message_cdev_open = 0;
	fpga_key_fasync(-1, fd, 0);
	
    printk("fpga_key_release()--\n");  
    return 0;  
} 


struct file_operations meassage_operatons =  
{  
    .owner = THIS_MODULE,  
    .open = fpga_key_open,  
    .write = fpga_key_write,
    .read = fpga_key_read, 
    .fasync = fpga_key_fasync,
    .release = fpga_key_release,  
};  
  
static int __init fpga_key_init(void)  
{  
    struct fpga_key_dev * dev;  
	char * temp_char = "hello world\n";
	int ret = 0;
	int irq = 0;
  
    printk("fpga_key_to_app_init(void)++\n");  
  
    dev = &fpga_key_dev;  
	strcpy(dev->test, temp_char);;

    alloc_chrdev_region(&dev->devno, 0, 1, "fpga_key_to_app");  
    cdev_init(&dev->cdev, &meassage_operatons);  
    cdev_add(&dev->cdev, dev->devno, 1);  

    dev->fpga_key_class = class_create(THIS_MODULE, "fpga_key_class");  
    if(IS_ERR(dev->fpga_key_class)) {  
         printk("Err: failed in creating class./n");  
         goto fail1;   
     }  
    device_create(dev->fpga_key_class, NULL, dev->devno, NULL, "fpga_key");  

	
	//init irq
	ret = gpio_request(GPIO_TO_PIN(1, 27), "fpga_key_inter");
	if(ret){
		printk("gpio_request() failed !\n");
		goto fail1;
	}
	ret = gpio_direction_input(GPIO_TO_PIN(1, 27));
	if(ret){
		printk("gpio_direction_input() failed !\n");
		goto fail2;	
	}
	irq = gpio_to_irq(GPIO_TO_PIN(1, 27));
	if(irq < 0){
		printk("gpio_to_irq() failed !\n");
		ret = irq;
		goto fail2;	
	}
	printk("irq = %d\n", irq);
	ret = request_irq(irq, 
					irq_handler, 
					IRQF_TRIGGER_FALLING | IRQF_SHARED, 
					"fpga_key_inter", 
					&dev->devno); 
	if(ret){
		printk("request_irq() failed ! %d\n", ret);
		goto fail2;
	}
	
    printk("fpga_key_to_app_init(void)--\n");      
    return 0;  

fail2:	
	gpio_free(GPIO_TO_PIN(1, 27));	
fail1:    
	device_destroy(dev->fpga_key_class, dev->devno);  
    class_destroy(dev->fpga_key_class);   
    cdev_del(&dev->cdev);  
    unregister_chrdev_region(dev->devno, 1);  

	return ret;
}  
static void __exit fpga_key_exit(void)  
{  
    struct fpga_key_dev *dev = &fpga_key_dev;  
	int irq = 0;
  
    printk("fpga_key_to_app_exit(void)++\n"); 

	irq = gpio_to_irq(GPIO_TO_PIN(1, 27));
	printk("irq = %d\n", irq);
	free_irq(irq, &dev->devno); 
	gpio_free(GPIO_TO_PIN(1, 27));
	
    device_destroy(dev->fpga_key_class, dev->devno);  
    class_destroy(dev->fpga_key_class);   
    cdev_del(&dev->cdev);  
    unregister_chrdev_region(dev->devno, 1);  
       
    printk("fpga_key_to_app_exit(void)--\n");  
}  
module_init(fpga_key_init);  
module_exit(fpga_key_exit);  
  
MODULE_LICENSE("GPL");  
MODULE_AUTHOR("Driver Monkey");  
MODULE_DESCRIPTION("Test fpga_key to App");  

测试程序:

#include<stdio.h>  
#include<sys/types.h>  
#include<sys/stat.h>  
#include<fcntl.h>  
#include<sys/select.h>  
#include<unistd.h>  
#include<signal.h>  
#include<string.h>  
  
unsigned int flag = 0;  
  
void sig_handler(int sig)  
{  
  printf("%s\n",__FUNCTION__);  
  flag++;  
  printf("flag = %d\n", flag);
}  
int main(void)  
{  
    char r_buf[20];  
    char *w_buf = "hello write!\n";  
    int r_count = 0;  
    int fd;  
    int f_flags;  
    flag++;  
    fd=open("/dev/fpga_key",O_RDWR);  
    if(fd<0)  
    {  
        perror("open");  
        return-1;  
    }  

    signal(SIGIO, sig_handler); 
    fcntl(fd, F_SETOWN, getpid());
    f_flags = fcntl(fd, F_GETFL);
    fcntl(fd, F_SETFL, FASYNC | f_flags); 
	
    while(1)
    {
	    printf("waiting \n"); 
	    sleep(2);
	    if(flag > 3)
		    break;
    }       

    close(fd);  
  
    return 0;  
}  



### PS GPIO中断的实现方法 在PowerShell环境中,虽然原生支持有限,但可以通过调用底层API或者借助第三方库来实现对GPIO中断的支持。以下是关于如何通过PowerShell管理GPIO以及设置中断的具体说明。 #### 1. 利用Windows IoT Core API 对于运行Windows IoT Core的操作系统,可以利用其内置的`System.Device.Gpio`命名空间中的类来处理GPIO操作。具体来说: - 需要先初始化一个`GpioController`实例。 - 获取指定编号的GPIO引脚并配置为输入模式。 - 设置中断触发条件(上升沿、下降沿或双边沿)。 - 注册事件处理器以响应中断信号。 示例代码如下所示: ```csharp using System; using System.Device.Gpio; class Program { static void Main(string[] args){ int pinNumber = 34; // 对应于所选的GPIO针脚号 [^1] using(GpioController controller = new GpioController()){ controller.OpenPin(pinNumber, PinMode.Input); controller.SetDebounceTimeout(pinNumber, TimeSpan.FromMilliseconds(50)); controller.RegisterCallbackForPinChangedEvent( pinNumber, PinEdge.Rising | PinEdge.Falling, (object sender, PinChangedEventArgs e) => { Console.WriteLine($"Interrupt detected on pin {e.PinNumber} with edge {e.ChangeType}"); } ); Console.ReadLine(); // Keep the program running to listen for events. } } } ``` 上述C#片段展示了基本流程[^1],尽管这是针对.NET环境编写的例子,在PowerShell里也可以采用类似的逻辑并通过Invoke-Expression执行嵌入式脚本完成相同功能。 #### 2. OF设备树定义下的GPIO属性解析 当涉及到更复杂的硬件抽象层时,则需参照Open Firmware标准文档中有关gpios节点的规定[^2]。这通常用于描述特定平台上的外围组件连接情况及其行为特性。例如,如果某个按键被映射至某条IRQ线路,则可能看到类似下面这样的DTB节录: ```dts key@0 { compatible = "linux,push-button"; gpios = <&amp;gpiochip0 17 GPIO_ACTIVE_LOW>; /* Assuming active low */ interrupts = <18 IRQ_TYPE_EDGE_FALLING>; label = "User Button A"; linux,code = <BTN_0>; }; ``` 这里明确了几个重要参数:关联的GPIO控制器索引(&amp;gpiochip0),实际使用的管脚位置(17),极性标志(GPIO_ACTIVE_LOW),还有中断源标识符(18)。 #### 3. 寄存器级访问机制探讨 某些情况下或许希望绕过操作系统提供的高层接口而直接操控寄存器位域。这时就需要熟悉目标MCU架构手册里的相关内容了。比如ARM Cortex-M系列微控制器上常见的EXTI模块便是专门用来接收外部异步请求脉冲序列的单元之一。假设我们正在讨论的是基于TI Sitara AM33xx SoCs的产品线的话,那么可能会遇到像这样声明结构体变量的情况: ```cpp union GPIOXINT_REG{ struct{ uint32_t SEL : 16; uint32_t RSVD : 16; }; }; volatile union GPIOXINT_REG * const pIntSelRegAddr = reinterpret_cast<volatile union GPIOXINT_REG *>(0x44E10A90); // Hypothetical address of XINT3SEL register [^3] pIntSelReg->SEL |= (1 << N); // Enable selected GPIO as interrupt source where 'N' denotes bit position within field range . ``` 以上伪代码片段仅作示意用途,并不代表真实有效的解决方案。它试图表达的思想是如何定位到具体的外设基址之后再按照数据手册指示修改对应字段值从而激活期望的功能选项。 #### 结论 综上所述,无论是借助高级别的软件框架还是深入到底层细节层面去定制化开发方案都是可行的选择路径。然而需要注意的是每种途径都有各自的优缺点考量因素存在,因此应当依据项目需求权衡利弊后再做决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值