UNIX环境高级编程 进程控制

本文详细介绍了进程管理中的核心概念,包括fork、exec、wait和waitpid等函数的使用方法及其区别,探讨了进程间的资源共享和竞争条件等问题。

 

 

相关函数列表

//下列函数返回一个进程的标识符
#include <unistd.h>
pid_t getpid(void);
pid_t getppid(void);
uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

//创建新进程
#include <unistd.h>
pid_t fork(void);
pid_t vfork(void);


//当一个进程正常或异常终止时,内核就向其父进程发送SIGCHLD信号,wait或waitpid的进程会
//1.如果其所有子进程都还在运行则阻塞
//2.如果一个子进程已停止,正等待父进程获取其终止状态,则取得该子进程的终止状态立即返回
//3.如果它没有任何子进程,则立即出错返回
//两个函数的区别
//1.在一个子进程终止前,wait使其调用者阻塞,而waitpid有一选项,可使调用者不阻塞
//2.waitpid并不等待在其调用之后的第一个终止子进程,它有若干个选项,可以控制它所等待的进程
#include <sys/wait.h>
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);

//Single UNIX Specification包括了另一个取得进程终止状态的函数--waitid,此函数类似于waitpid
#include <sys/wait.h>
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

//大多数UNIX系统实现提供了另外两个函数,这两个函数是从UNIX系统BSD分支延袭下来的
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
pid_t wait3(int *statloc, int options, struct rusage *rusage);
pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage)


//fork函数创建新进程,用exec可以初始执行新的程序,exit函数和wait函数处理终止和等待终止
//函数exec系列,一共有7个,这些函数的区别
//1.前4个函数是用路径做参数,后两个用文件名,最后一个用文件描述符
//2.与参数传递有关,(l表示list,v表示矢量vector),函数execl,execlp和execle要求将新程序的
//  每个命令参数都说明一个单独的参数。另外四个函数(execv,execvp,execve,fexecve)则应先
//  构造一个指向各参数的指针数组,然后将数组作为参数
//3.与新程序传递环境表相关,以e结尾的三个函数(execle,execve和fexecve)可以传递一个指向环境
//  字符串指针数组。其他4个函数则使用调用进程中的environ变量为新程序复制现有的环境
#include <unistd.h>
int execl(const char *pathname, const char *arg0, ... /* (char *)0 */);
int execv(const char *pathname, char *const argv[]);
int execle(const char *pathname, const char *arg0, ... /* (char *)0, char*const envp[] */);
int execve(const char *pathname, char *const argv[], char *const envp[];
int execlp(const char *filename, const char *arg0, ... /* (char *)0 */);
int execvp(const char *filename, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);


//设置实际用户ID和有效用户ID
#include <unistd.h>
int setuid(uid_t uid);
int setgid(gid_t gid);

//历史上BSD支持下列函数,其功能是交换实际用户ID和有效用户ID的值
#include <unistd.h>
int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);

//POIX.1包含的两个函数类似于setuid和setgid,但只更改有效用户ID和有效组ID
#include <unistd.h>
int seteuid(uid_t uid);
int setegid(gid_t gid);


//下面函数用来在程序中执行一个命令字符串,因为system实际调用了fork,exec和waitpid,因此有
//三种返回值
//1.for失败或者waitpid返回除EINTR之外的出错,则system返回-1,并且设置errno以指示错误类型
//2.如果exec失败(表示不能执行shell),则其返回值如同shell执行了exit(127)一样
//3.柔则所有3个函数(fork,exec和waitpd)都成功,那么system的返回值是shell的终止状态
#include <stdlib.h>
int system(const char *cmdstring);


//进程会计,每个系统实现不同,但是基本结构如下
#include <sys/acct.h>
typedef u_short comp_t;
struct acct {
    char ac_flag;      //flag
    char ac_stat;      //termination status
    uid_t ac_uid;      //real user ID
    gid_t ac_gid;      //read group ID
    dev_t ac_tty;      //controlling terminal
    time_t ac_btime;   //starting calendar time
    comp_t ac_utime;   //user CPU time
    comp_t ac_stime;   //system CPU time
    comp_t ac_etime;   //elapsed time
    comp_t ac_mem;     //average memory usage
    comp_t ac_io;      //bytes transferred(read and write)
    comp_t ac_rw;      //blocks on BSD system
    char ac_comm[8];   //command name
};


//一个用户可能有多个登陆名,系统会记录用户登陆时的名字,下面函数可以获取
#include <unistd.h>
char *getlogin(void);

//可以用nic函数获取和更改它的nic值,这个函数只能影响到自己的nice值,不能影响任何其他进程的
//nice值
#include <unistd.h>
int nice(int incr);

//下面函数可以像nice一样获得进程的nice值,而且还可以获得一组相关进程的nice值
//which值可以取以下三个值之一:
//1.PRIO_PROCESS表示进程
//2.PRIO_PGRP表示进程组
//3.PRIO_USER表示用户ID
#include <sys/resource.h>
int getpriority(int which, id_t who);

//下面函数可用于为进程,进程组和属于特定用户ID的所有进程设置优先级
#include <sys/resource.h>
int setpriority(int which, id_t who, int value);

//任何一个进程都可以调用下面函数获得它自己的系统CPU时间,用户CPU时间,以及子进程的系统CPU
//时间,子进程的用户CPU时间
#include <sys/times.h>
clock_t times(struct tms *buf);
//tms结构体如下
struct tms {
    clock_t tms_utimes;      //user cpu time
    clock_t tms_stime;       //system cpu time
    clock_t tms_cutime;      //user cpu time,terminated children
    clock_t tms_cstime;      //system cpu time,terminated children
};

 

 

fork函数

其创建新进程为子进程,fork函数被调用一次,但是返回两次。

子进程返回的是0

父进程返回的是子进程的进程ID

子进程和父进程继续执行fork之后的指令,子进程是父进程的副本,列如子进程获得父进程数据空间,堆和栈 

的副本(注意是子进程所拥有的副本)。父进程和子进程并不共享这些存储空间部分,父进程和子进程共享正文段。

返回子进程ID的原因是一个进程可以有多个子进程,但是没有函数可以获得所有子进程的ID,而父进程只有一个可以通过函数getppid()获得

fork之后是父进程先执行还是子进程先执行是不确定的,取决于操作系统的调度,如果要求父进程和子进程之间相互同步,则要求某种形式的进程间通信。

父进程和子进程共享相同的文件描述符

 

fork之后父进程和子进程之间对打开文件的共享


 

 

在fork之后处理文件描述符有以下两种情况

1)父进程等待子进程完成,在这种情况下,父进程无需对其描述符做任何处理。当子进程终止后,它曾进行过读,写操作的任一共享描述符的文件偏移量已做了相应的更新

2)父进程和子进程各自执行不同的程序段,这种情况下,在fork之后,父进程和子进程各自关闭他们不需要使用的文件描述符,这样就不会干扰对方使用的文件描述符,这种方法是网络服务器进程经常使用的

 

fork有以下两种用法

1)一个父进程希望复制自己,使父进程和子进程同时执行不同的代码段,这在网络服务进程中是常见的--父进程等待客户度端的服务请求,当请求到来时父进程调用fork使子进程处理此请求,父进程继续等待下一个请求

2)一个进程要执行一个不同的程序,这对shell是常见的,在这种情况下,子进程从fork返回后立即调用exec

 

fork和vfork的区别

1)子进程并不将父进程的地址空间完全复制到子进程中,因为子进程会立即调用exec,这种优提高了效率

2)vfork保证子进程优先运行,在它调用exec或exit之后父进程才可能被调度运行,当子进程调用这两个函数中的任意一个时,父进程会恢复运行。

 

 

进程有5种正常终止及3种异常终止方式

1)在main函数内执行return语句

2)调用exit函数

3)调用_exit或_Exit函数

4)进程的最后一个线程在其启动例程中执行return语句

5)进程的最后一个线程调用pthread_exit函数

 

3种异常终止具体如下

1)调用abort,产生SIGABRT信号,这是下一种异常终止的一种特列

2)当进程接收到某些信号时,信号可由进程自身(如调用abort函数),其他进程或内核产生

3)最后一个线程对"取消"(cancellation)请求作出响应

所有子进程退出后,将终止状态返回给父进程,如果父进程已经退出,则将父进程改为init进程

一个已经终止,但是其父进程尚未对其进行善后处理(获取终止子进程的有关信息,释放他仍占用的资源)的

进程被称为 僵死进程(zombie)

 

 

检查wait和waitpid锁返回的终止状态的宏

说明
 WIFEXITED(status)

若为正常终止子进程返回的状态,则为真。对于这种情况可执行WEXITSTATUS(

status),获取子进程传给exit或_exit参数的低8位

WIFSIGNALED(status)

若为异常终止进程返回的状态,则为真(接到一个不捕捉的信号),对于这种情况,

可执行WTERMSIG(status),获取使子进程终止的信号编号。另外,有些实现

(非Single UNIX Specification)定义宏WCOREDUMP(status),若已产生终止进程

的core文件,则它返回真

WIFSTOPPED(status)

若为当前暂停子进程的返回的状态,则为真。对于这种情况,可执行

WSTOPSIG(status),获取使子进程暂停的信号编号

WIFCONTINUED(status)

若在作业控制暂停后已继续的子进程返回了状态,则为真(POSIX.1的XSI扩展,

仅用于waitpid)

 

waitpid的options常量

常量说明
WCONTINUED

若是先支持作业控制,那么由id指定的任一子进程在停止后已经继续,但其状态尚未

报告,则返回其状态(POSIX.1的XSI扩展)

WNOHANG若由pid指定的子进程并不是立即可用的,则waitpid不阻塞,此时其返回值为0
WUNTRACED

若某是先支持作业控制,而由pid指定的任一子进程已处于停止状态,并且其状态自

停止以来还未报告过,则返回其状态。WIFSTOPPED宏确定返回值是否对应用与一个

停止的子进程

 

竞争条件

当多个进程都企图对共享数据进行某种处理,而最后的结果又取决于进程运行的顺序时,我们认为发生了

竞争条件(race condition)

 

7个exec函数之间的关系

函数pathnamefilenamefd参数表argv[]environenvp[]
execl    
execlp    
execle     
execv    
execvp    
execve     
fexecve    
名字中的字母 pflv e

  


 

 

 

 

解释器文件

现在所有的UNIX系统都支持解释器文件(interpreter file),它是文本文件

//形式是
#! pathname [optional-argument]

//比如
#! /bin/sh

pathname通常是绝对路径名,对它不进行什么特殊的处理(不适用PATH进行路径搜索)对这种文件的识别是由

内核作为exec系统调用处理的一部分来完成的。内核调用exec函数的进程世纪之星的并不是该解释器文件,而

是在该解释器文件第一行中 pathname所指定的文件。一定要将解释器文件(文本文件,它以 #! 开头)和解释器

(由该解释器我呢间第一行中的pathname指定)区分开来

比如一段程序调用一个解释器

cat /home/sar/bin/testinterp
#! /home/sar/bin/echoarg foo

//这里echoarg是一段程序,echoarg又exec了testinterp并传入了一些参数
//执行结果
//第一个打印的是解释器的pathname,然后是参数
//接着是解释器执行后调用的命令和命令参数
./a.out  
argv[0]: /home/sar/bin/echoarg
argv[1]: foo
argv[2]: /home/sar/bin/testinterp
argv[3]: myarg1
argv[4]: MY ARG2

  

 

 

进程会计

大多数UNIX系统提供了一个选项以进程会计(process accounting)处理。启动该选项后,每当进程结束时内核

就会写一个会计记录。典型的会计记录包含总量较小的二进制数据,一般包括命令名,所使用的CPU时间

总量,用户ID和组ID,启动时间等

函数acct启动和禁用进程会计,唯一使用这个函数的命是accton。root执行一个带路径名参数的通常是

/var/account/acct。  在linux中该文件是/var/account/pacct

会计记录结果定义在<sys/acct.h>中

 

进程会计,结构体,会计记录所需的各个数据 (CPU时间,传递的字符数等)都由内核保存在进程表中,并在一个新进程被创建时初始化(如在fork之后在子进程中)。进程终止时写一个会计记录

1.我们不能获取永不终止的进程会计记录,如init进程

2.会计文件记录的顺序对应于进程终止的顺序,而不是他们的启动顺序,为了确定启动顺序需要读全部的会计文件,并按照启动日历时间排序,但这样并不能保证完全精确

 

会计记录中的ac_flag值

ac_flag说明
AFORK进程是由fork产生的,但从未调用exec
ASU进程使用超级用户特权
ACCORE进程转存core
AXSIG进程由一个信号杀死
AEXPND扩展的会计条目
ANVER新格式记录

 

 

 

参考

实际用户ID,有效用户ID及设置用户ID

什么是实际用户ID、有效用户ID和设置用户ID

一个fork的谜题

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值