poj2553
Longest Ordered Subsequence
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 13831 | Accepted: 5864 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
思路:本题是求的最长上升子序列,这里用DP,状态转移方程为:
for 0->i to N-1
LIS[i]=1;
LIS[K]=MAX{LIS[i]:0<=i<k&&a[k]>a[i]}+1
代码:
#include<iostream>
using namespace std;
int a[1010];
int LIS[1010];
int main()
{
int N,i,j,max;
scanf("%d",&N);
for(i=0;i<N;i++)
{
scanf("%d",&a[i]);
}
LIS[0]=1;
for(i=0;i<N;i++)
{
LIS[i]=1;
for(j=0;j<=i;j++)
{
if(a[i]>a[j]&&LIS[j]+1>LIS[i])
LIS[i]=LIS[j]+1;
}
}
max=0;
for(i=0;i<N;i++)
{
if(LIS[i]>max)
max=LIS[i];
}
printf("%d/n",max);
return 0;
}
本文介绍了一种使用动态规划解决最长上升子序列问题的方法,通过一个实例详细展示了算法的具体实现过程。
648

被折叠的 条评论
为什么被折叠?



