2018第二届中国移动金融发展大会

主题:《严“政”以待,共建移动金融新生态》

时间:4月24-25日

地点:北京.新世纪日航酒店

规模:500人+

主办方:移动支付网、北京移动金融产业联盟

协办方:北京网络信息安全技术创新产业联盟、第三方支付安全合作联盟

支持单位:中小银行互联网金融联盟、中国电子商务协会金融科技研究院、山东城商行合作联盟、中国云安全联盟C-CSA、深圳市大数据研究与应用协会

参与者:监管机构、卡组织、商业银行、电信运营商、行业协会、研究机构、检测认证机构、支付机构、互金机构、终端厂商、安全方案商、金融科技公司等。

大会背景

回首2017年,是中国移动金融产业政策监管最严格的一年。网联的上线,让第三方支付清算走向正规化;217、281号文的执行,更让整个支付产业走向合规;296号文的发布,对条码支付首次定性,从此迎来合规化发展;另一方面,央行对消费金融、现金贷等互联网金融产业的整治也让业界意识到,注重服务本质的金融科技创新才是发展未来。在2017年,中国移动支付产业问鼎全球,并向全球市场输出新技术和新模式,人工智能、人脸支付、无感支付、大数据等新兴移动金融技术,便捷了人们的日常生活,带来了产业新机遇新升级,但同时也面临着诸多挑战。与此同时,在移动金融日渐融入人们日常生活中时,合规化安全发展成为了社会热门话题。

展望2018年,在移动金融产业合规趋势之下,又有哪些值得关注的政策监管、技术创新以及发展趋势呢?藉此,移动支付网、北京移动金融产业联盟将于4月24-25日在北京·新世纪日航酒店举办2018第二届中国移动金融发展大会,诚邀各方探讨,强监管之下,移动金融的创新发展和未来。

大会看点

讨论议题

1、规范创新条码支付监管文件解读;

2、商业银行金融科技发展与监管要求;

3、国密算法在移动金融中的应用与思考;

4、对互联网可信身份认证两点问题的思考;

5、云闪付战略规划及模式创新;

6、格局的破与立,解读网联的现状与发展;

7、数据看金融,金融科技发展趋势报告;

8、无卡支付新机遇虚拟信用卡的创新与运营

9、从支付到金融,支付机构的产业升级;

10、新时代银行聚合支付发展新机遇;

11、畅想eSIM与移动金融结合的无限可能;

12、人工智能创新金融应用场景;

13、人脸识别在移动金融领域的应用分析;

14、无人零售背后的物联网支付解析;

15、区块链金融的案例分析和前景展望;

16、金融大数据发展现状及标准体系;

17、金融行业大数据应用痛点与解决之道;

18、商业银行大数据风控的思考与实践;

19、信用风险与金融大数据的共生共荣;

20、新金融、新技术破解反欺诈难题;

21、电信运营商大数据在金融风控中的应用;

22、金融大数据的安全分析;

23、公共交通领域移动支付应用情况;

24、高速公路+移动支付创新难点剖析;

25、交通无感支付创新应用

26、2017年度第四届金松奖颁奖典礼。

同期举办:移动金融安全分论坛、第三方支付安全闭门研讨会

门票:2800/人,3人及以上8折。

早鸟价:3月15日前报名付款2000/人,3人及以上8折。

含门票+自助午餐2天+茶歇3次+资料袋+PPT+会后结案报告+增值税专用/普通发票

演讲/展示赞助、门票请联系:

移动支付网姜瑞林手机/微信:18038063793

具体议程以大会专栏为准

往届回顾


有意参加请咨询:
http://www.51banhui.com/meet/101328.html
联系人:Dora
QQ:3501201954
手机:13515802613(微信号)


更多最新会议信息请登录蟠桃会会议平台
或关注微信公众号:canhuiqu
官方微博:蟠桃会议平台

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值