信息检索&FAQ硬核技术!飞桨开源百度自研SimNet模型

飞桨PaddlePaddle开源的SimNet-BOW-Pairwise模型在信息检索和FAQ问答中表现优秀,提升搜索智能化水平。通过深度学习,SimNet解决了关键词匹配失败的问题,实现语义级匹配,效果优于传统方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读:飞桨PaddlePaddle致力于让深度学习技术的创新与应用更简单。飞桨开源的百度自研SimNet-BOW-Pairwise语义匹配模型,在真实的FAQ问答场景中,比其他基于字面的相似度方法AUC提升了5%以上。在公开语义匹配数据集(LCQMC)进行评测准确率也达到了0.7532,性能超越同等复杂的CBOW基线模型。SimNet 显著改善了长冷 query 的搜索效果,提升了搜索智能化的水平,在百度搜索以及其它产品线广泛应用。

 

 

 

 

640?wx_fmt=gif

 

  1.文本语义匹配

640?wx_fmt=gif

文本语义匹配是自然语言处理中一个重要的基础问题,NLP领域的很多任务都可以抽象为文本匹配任务。例如,信息检索可以归结为查询项和文档的匹配,问答系统可以归结为问题和候选答案的匹配,对话系统可以归结为对话和回复的匹配。如何提升文本匹配的准确度,是自然语言处理领域的一个重要挑战。

 

让我们来看一个简单的例子,比较各候选句子哪句和原句语义更相近

 

原句:“车头如何放置车牌”

  • 比较句1:“前牌照怎么装”

  • 比较句2:“如何办理北京车牌”

  • 比较句3:“后牌照怎么装”

 

使用文本匹配(这里使用SimNet)分别计算原句与三个比较句的相似度,结果如下。

 

640?wx_fmt=png

 

(1)比较句1与原句,虽然句式和语序等存在较大差异,但是所表述的含义几乎相同,所以SimNet给出了较高的相似度,为0.761517;

 

(2)比较句2与原句,虽然存在“如何” 、“车牌”等共现词,但是所表述的含义完全不同,所以SimNet给出了很低的相似度,为0.486205;

 

(3)比较句3与原句,二者讨论的都是如何放置车牌的问题,只不过一个是前牌照,另一个是后牌照。二者间存在一定的语义相关性,所以SimNet给出了介于比较句1和比较句2之间的相似度得分,为0.697181。

 

通过这个例子我们不难窥探出语义匹配的强大的能力,它在搜索优化、推荐系统、快速检索排序、智能客服上都有着极大的用武之地!

 

  • 信息检索:在信息检索领域的很多应用中,都需要根据原文本来检索与其相似的其他文本,使用场景非常普遍。除纯文本检索外,SimNet还适用于通过标签来检索图片、视频等场景,大大提高检索效率。

  • 新闻推荐:通过用户刚刚浏览过的新闻标题,自动检索出其他的相似新闻,个性化地为用户做推荐,从而增强用户粘性,提升产品体验。

  • 智能客服:用户输入一个问题后,自动为用户检索出相似的问题和答案,节约人工客服的成本,提高效率。

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值