Facer's pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the cats to do his exercises. Facer's great exercise for cats contains three different moves:g i : Let the ith cat take a peanut.e i : Let the ith cat eat all peanuts it have.s i j : Let the ith cat and jth cat exchange their peanuts.All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea. You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.
Input
The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers n, m and k are given firstly, where n is the number of cats and k is the length of the move sequence. The following k lines describe the sequence.(m≤1,000,000,000, n≤100, k≤100)
Output
For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.
Sample Input
3 1 6 g 1 g 2 g 2 s 1 2 g 3 e 2 0 0 0
Sample Output
2 0 1
Source
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=105;
typedef long long LL;
int N;
struct Matrix
{
LL matrix[maxn][maxn];
Matrix()
{
memset(matrix,0,sizeof(matrix));
}
void init()
{
for(int i=0;i<maxn;i++)matrix[i][i]=1;
}
};
Matrix matrixmul(Matrix a,Matrix b)
{
Matrix ans;
for(int i=0;i<N;i++)
{
for(int k=0;k<N;k++)
{
if(!a.matrix[i][k])continue;
for(int j=0;j<N;j++)
{
ans.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j];
}
}
}
return ans;
}
Matrix matrixquickpow(Matrix a,int b)
{
Matrix ans;
ans.init();
while(b)
{
if(b&1)ans=matrixmul(ans,a);
b>>=1;
a=matrixmul(a,a);
}
return ans;
}
int main()
{
int n,m,k,x,y;
char s;
while(scanf("%d%d%d",&n,&k,&m)==3&&(m||n||k))
{
Matrix mtr;
mtr.init();
N=n+1;
int cas=1;
while(m--)
{
cin>>s;
if(s=='g')
{
scanf("%d",&x);
mtr.matrix[x-1][n]++;
}
else if(s=='e')
{
scanf("%d",&x);
for(int i=0;i<=n;i++)mtr.matrix[x-1][i]=0;
}
else if(s=='s')
{
scanf("%d%d",&x,&y);
for(int i=0;i<=n;i++)swap(mtr.matrix[x-1][i],mtr.matrix[y-1][i]);
}
}
Matrix ans=matrixquickpow(mtr,k);
for(int i=0;i<n;i++)
{
if(i==0)printf("%I64d",ans.matrix[i][n]);
else printf(" %I64d",ans.matrix[i][n]);
}
printf("\n");
}
}
猫咪训练算法
本文介绍了一种使用矩阵快速幂和矩阵乘法优化的算法,解决猫咪训练中花生分配问题。通过命令序列的重复执行,确定每只猫最终获得的花生数量。
773

被折叠的 条评论
为什么被折叠?



