| apply | Apply Functions Over Array Margins对阵列行或者列使用函数 | apply(X, MARGIN, FUN, …) |
| lapply | Apply a Function over a List or Vector对列表或者向量使用函数 | lapply(X, FUN, …) |
| sapply | Apply a Function over a List or Vector对列表或者向量使用函数 | sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE) |
| vapply | Apply a Function over a List or Vector对列表或者向量使用函数 | vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE) |
| tapply | Apply a Function Over a Ragged Array对不规则阵列使用函数 | tapply(X, INDEX, FUN = NULL, …, simplify = TRUE) |
| eapply | Apply a Function Over Values in an Environment对环境中的值使用函数 | eapply(env, FUN, …, all.names = FALSE, USE.NAMES = TRUE) |
| mapply | Apply a Function to Multiple List or Vector Arguments对多个列表或者向量参数使用函数 | mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE) |
| rapply | Recursively Apply a Function to a List运用函数递归产生列表 | rapply(object, f, classes = “ANY”, deflt = NULL,how = c(“unlist”, “replace”, “list”), …) |
1、apply {base}
通过对数组或者矩阵的一个维度使用函数生成值得列表或者数组、向量。
apply(X, MARGIN, FUN, …)
X 阵列,包括矩阵
MARGIN
例:
> xxx<-matrix(1:20,ncol=4) > xxx [,1] [,2] [,3] [,4] [1,] 1 6 11 16 [2,] 2 7 12 17 [3,] 3 8 13 18 [4,] 4 9 14 19 [5,] 5 10 15 20 > apply(xxx,1,mean) [1] 8.5 9.5 10.5 11.5 12.5 > apply(xxx,2,mean) [1] 3 8 13 18 > apply(xxx,c(1,2),mean) # 跟原来的一样 [,1] [,2] [,3] [,4] [1,] 1 6 11 16 [2,] 2 7 12 17 [3,] 3 8 13 18 [4,] 4 9 14 19 [5,] 5 10 15 20
2、lapply {base}
通过对x的每一个元素运用函数,生成一个与元素个数相同的值列表
lapply(X, FUN, …)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
例:
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE)) > x $a [1] 1 2 3 4 5 6 7 8 9 10 $beta [1] 0.04978707 0.13533528 0.36787944 1.00000000 2.71828183 7.38905610 20.08553692 $logic [1] TRUE FALSE FALSE TRUE > lapply(x,mean) $a [1] 5.5 $beta [1] 4.535125 $logic [1] 0.5
3、sapply {base}
这是一个用户友好版本,是lapply函数的包装版。该函数返回值为向量、矩阵,如果simplify=”array”,且合适的情况下,将会通过simplify2array()函数转换为阵列。
sapply(x, f, simplify=FALSE, USE.NAMES=FALSE)返回的值与lapply(x,f)是一致的。
sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES
例:
> k <- c("a", "b", "c")
> sapply(k, paste,USE.NAMES=FALSE,1:5,sep="...")
[,1] [,2] [,3]
[1,] "a...1" "b...1" "c...1"
[2,] "a...2" "b...2" "c...2"
[3,] "a...3" "b...3" "c...3"
[4,] "a...4" "b...4" "c...4"
[5,] "a...5" "b...5" "c...5"
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep="...")
a b c
[1,] "a...1" "b...1" "c...1"
[2,] "a...2" "b...2" "c...2"
[3,] "a...3" "b...3" "c...3"
[4,] "a...4" "b...4" "c...4"
[5,] "a...5" "b...5" "c...5"
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep="...",simplyfy=TRUE)
a b c
[1,] "a...1...TRUE" "b...1...TRUE" "c...1...TRUE"
[2,] "a...2...TRUE" "b...2...TRUE" "c...2...TRUE"
[3,] "a...3...TRUE" "b...3...TRUE" "c...3...TRUE"
[4,] "a...4...TRUE" "b...4...TRUE" "c...4...TRUE"
[5,] "a...5...TRUE" "b...5...TRUE" "c...5...TRUE"
> sapply(k, paste,simplify=TRUE,USE.NAMES=TRUE,1:5,sep="...")
a b c
[1,] "a...1" "b...1" "c...1"
[2,] "a...2" "b...2" "c...2"
[3,] "a...3" "b...3" "c...3"
[4,] "a...4" "b...4" "c...4"
[5,] "a...5" "b...5" "c...5"
> sapply(k, paste,simplify=FALSE,USE.NAMES=TRUE,1:5,sep="...")
$a
[1] "a...1" "a...2" "a...3" "a...4" "a...5"
$b
[1] "b...1" "b...2" "b...3" "b...4" "b...5"
$c
[1] "c...1" "c...2" "c...3" "c...4" "c...5"
> z12 <- function(z) return(c(z,z^2))
> sapply(1:8,z12)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 2 3 4 5 6 7 8
[2,] 1 4 9 16 25 36 49 64
# sapply(x,f) applies the function f() to each element of x and then converts the result to a matrix
lapply() 和sapply()
lapply() (for list apply) 对list的每个元素(如果是向量则转化list)应用指定函数并且返回list。但如果想返回矩阵则可以用sapply(for simplified [l]apply)
> lapply(list(1:3,25:29),median) [[1]] [1] 2 [[2]] [1] 27 > sapply(list(1:3,25:29),median) [1] 2 27
4、vapply {base}
vapply类似于sapply函数,但是它的返回值有预定义类型,所以它使用起来会更加安全,有的时候会更快
在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容,以使他们具有相同的长度和类型。类型顺序:逻辑<</span>整型<</span>实数<</span>复数
vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES
FUN.VALUE
例:
> x<-data.frame(a=rnorm(4,4,4),b=rnorm(4,5,3),c=rnorm(4,5,3))
> x
a b c
1 -3.6347838 10.148212 7.31046748
2 11.9348560 3.424033 6.84397278
3 -0.7628213 4.501820 0.05871996
4 2.3421496 6.887066 5.77923358
> vapply(x,mean,c(c=0))
a b c
2.469850 6.240283 4.998098
> k<-function(x) { list(mean(x),sd(x)) }
> vapply(x,k,c(c=0))
错误于vapply(x, k, c(c = 0)) : 值的长度必需为1,
但FUN(X[[1]])结果的长度却是2
>
> vapply(x,k,c(c=0,b=0))
错误于vapply(x, k, c(c = 0, b = 0)) : 值的种类必需是'double',
但FUN(X[[1]])结果的种类却是'list'
> vapply(x,k,c(list(c=0,b=0)))
a b c
c 2.46985 6.240283 4.998098
b 6.765584 2.980143 3.354695
>
5、tapply {base}
对不规则阵列使用向量,即对一组非空值按照一组确定因子进行相应计算
tapply(X, INDEX, FUN, …, simplify = TRUE)
x
INDEX
simplify
例:
> height <- c(174, 165, 180, 171, 160)
> sex<-c("F","F","M","F","M")
>
> tapply(height, sex, mean)
F M
170 170
6、eapply {base}
eapply函数通过对environment中命名值进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
eapply(env, FUN, …, all.names = FALSE, USE.NAMES = TRUE)
env
all.names 逻辑值,指示是否对所有值使用该函数
USE.NAMES
例:
> require(stats) > env <- new.env(hash = FALSE) # so the order is fixed > env$a <- 1:10 > env$beta <- exp(-3:3) > env$logic <- c(TRUE, FALSE, FALSE, TRUE) > utils::ls.str(env) a : int [1:10] 1 2 3 4 5 6 7 8 9 10 beta : num [1:7] 0.0498 0.1353 0.3679 1 2.7183 ... logic : logi [1:4] TRUE FALSE FALSE TRUE > eapply(env, mean) $logic [1] 0.5 $beta [1] 4.535125 $a [1] 5.5 > unlist(eapply(env, mean, USE.NAMES = FALSE)) [1] 0.500000 4.535125 5.500000 > eapply(env, quantile, probs = 1:3/4) $logic 25% 50% 75% 0.0 0.5 1.0 $beta 25% 50% 75% 0.2516074 1.0000000 5.0536690 $a 25% 50% 75% 3.25 5.50 7.75 > eapply(env, quantile) $logic 0% 25% 50% 75% 100% 0.0 0.0 0.5 1.0 1.0 $beta 0% 25% 50% 75% 100% 0.04978707 0.25160736 1.00000000 5.05366896 20.08553692 $a 0% 25% 50% 75% 100% 1.00 3.25 5.50 7.75 10.00 >
7、mapply {base}
mapply是sapply的多变量版本。将对…中的每个参数运行FUN函数,如有必要,参数将被循环。
mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
MoreArgs
SIMPLIFY
USE.NAMES
例:
> mapply(rep, 1:4, 4:1) [[1]] [1] 1 1 1 1 [[2]] [1] 2 2 2 [[3]] [1] 3 3 [[4]] [1] 4
8、rapply {base}
rapply是lapply的递归版本
rapply(X, FUN, classes = “ANY”, deflt = NULL, how = c(“unlist”, “replace”, “list”), …)
X
classes
deflt
how
原文:http://blog.sina.com.cn/s/blog_403aa80a010174dj.html
本文详细介绍了R语言中的apply函数家族,包括apply、lapply、sapply、vapply、tapply、eapply、mapply和rapply,阐述了它们的用法、参数和应用场景。同时提供了丰富的实例代码,帮助读者深入理解并掌握这些函数的使用方法。
2424

被折叠的 条评论
为什么被折叠?



