第13组 Alpha冲刺 (1/3)

本文是第13组在Alpha冲刺阶段的总结,涵盖了已完成的任务,如前端网站搭建和后端神经网络准备。小组遇到的挑战包括Spring、SpringMVC、MyBatis整合,网页跳转,字符编码问题等。他们计划进行前后端整合,使用Java与Python混合编程,以解决图像修复问题。

目录

一、过去完成的任务

二、小组分工

三、过去完成的任务

1. 前端部分——网站的搭建

2. 后端部分——神经网络搭建的准备

四、计划完成的工作

五、遇到的困难

1. Spring、SpringMVC和MyBatis的整合及环境搭建

2. 网页跳转

3. tomcat日志及网页内容中文乱码

4. 前后端整合思路的确定

5. 后端代码开发

六、燃尽图

七、例会的照片

八、收获和疑问

1. 收获

2. 疑问


一、过去完成的任务

  • 组内会议讨论,确定选题——图像修复。

  • 完成了新选题的小组分工。

  • 查找相关资料开始学习相关知识,如相关论文的阅读和sql、java、python(pyTorch)的温习。

  • 参加老师所开展的选题讨论,基本确定了项目的开发方向。

二、小组分工

成员姓名 分工
庄绪杰、朱丽鲜、胡智超 前端部分,利用SSM框架进行网站搭建
潘摅宇、陆子毅、王子龙 后端部分,利用unet模型完成去噪及图像修复的实现

三、过去完成的任务

1. 前端部分——网站的搭建

(1) 选定Web框架——SSM框架,并进行深入学习和了解

SSM(Spring+SpringMVC+MyBatis)框架:由Spring、MyBatis两个开源框架整合而成(SpringMVC是Spring中的部分内容)

Spring就像是整个项目中装配bean的大工厂,在配置文件中可以指定使用特定的参数去调用实体类的构造方法来实例化对象。也可以称之为项目中的粘合剂。其核心思想是IoC(控制反转),即不再需要程序员去显式地new一个对象,而是让Spring框架帮你来完成这一切。

SpringMVC在项目中拦截用户请求,它的核心Servlet即DispatcherServlet承担中介或是前台这样的职责,将用户请求通过HandlerMapping去匹配Controller,Controller就是具体对应请求所执行的操作。SpringMVC相当于SSH框架中struts。

mybatis是对jdbc的封装,它让数据库底层操作变的透明。mybatis的操作都是围绕一个sqlSessionFactory实例展开的。mybatis通过配置文件关联到各实体类的Mapper文件,Mapper文件中配置了每个类对数据库所需进行的sql语句映射。在每次与数据库交互时,通过sqlSessionFactory拿到一个sqlSession,再执行sql命令。

页面发送请求给控制器,控制器调用业务层处理逻辑,逻辑层向持久层发送请求,持久层与数据库交互,后将结果返回给业务层,业务层将处理逻辑发送给控制器,控制器再调用视图展现数据。

(2) Spring、SpringMVC和MyBatis的整合及环境搭建

① 整体框架:

 ② 依赖导入:

 ③ 配置web.xml(涉及Spring、SprongMVC等)

#pragma region #include <iostream> #include <opencv4/opencv2/core/core.hpp> #include <opencv4/opencv2/highgui.hpp> #include <opencv4/opencv2/opencv.hpp> #include <opencv4/opencv2/imgproc/types_c.h> #include "pigpio.h" #include <thread> #include <cmath> #include <chrono> #include <time.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <assert.h> #include <termios.h> #include <string.h> #include <sys/time.h> #include <time.h> #include <sys/types.h> #include <errno.h> #include <signal.h> using namespace std; using namespace cv; #pragma endregion #define BAUD 9600//串口波特率 #pragma region int MAX_YU = 140; int MIN_YU = 60; // PID 各个数值 float kr = 0.00000001, kl = -0.0000001, lr = 0, ll = 0, br, bl; bool flag_avoid = false; // 躲避锥桶标志位 bool flag_zhang = false; // 未知 bool flag_voidcount = false; // 未知 bool flag_ren = false; // 人行道判断标志位 bool flag_yellow = false; double limit_voidtime = 0.17; bool flag_start; // 判断蓝色挡板标志位 bool flag_count; // 未知 double time_void = 100; // 未知 double angle; // 计算得到的角度 double angle_bi; // 避障角度 double angle_cover; //?????????? double speed_avoid = 10050; //??????? // double speed_delay = 10200;//????????????????? double heigth; double kuan; double low = 0, high = 0; Mat kernel_3 = Mat::ones(cv::Size(3, 3), CV_8U); Mat kernel = getStructuringElement(MORPH_RECT, Size(1, 1)); int shu = 0; int sum_avoid = 0; double width, x_r, x_l; //,heigth; //Mat frame, ca; static int ret; static int GPS; char r_buf[1024]; FILE* fp; double angle_x = 0; //???????y?? float a[3], w[3], Angle[3], h[3]; int flag_picture, duo_flag; // Rect list;cd ~ clock_t start_, end_, mid_time; static void on(int, void*); //double picture(); void GetROI(Mat src, Mat& ROI); double PID(double error1); vector<Point2f> get_lines_fangcheng(vector<Vec4i> lines); void Set_gpio(); Rect Obstacles(Mat img); Rect blue(Mat img); // 识别蓝色挡板 Rect yellow(Mat img); // 识别黄色挡板 string str = "sudo cp /home/pi/.Xauthority /root/"; int flag = system(str.c_str()); #pragma endregion //5G Mat img, img_HSV, img_HSV_mask, img_combined, img_per, img_clone, warped, frame; int start_flag = 1, find_blue_card_flag = 0, cross_flag = 0, music_flag = 0, avoid_flag = 0, car_blake_flag = 0; int LAB_Bmin = 190, LAB_Bmax = 255, HSL_Lmin = 157, HSL_Lmax = 255; int TIMECOUNT = 0; //定时器延时 int line_error = 0, line_error1 = 0, line_last_error = 0, line_last_error1 = 0; float center_x = 0, left_x = 0, right_x = 0; int line_y = 190; int rail_width_pix = 56;//跑道一半宽度 Point mousePos(0, 0); double kp = 0.28; // 0.155;//0.11?????;//0.16;//0.2;//0.3;//0.1???? 0.3???? double kd = 0.04; // 0.1;//0 ????? double kp1 = 0.25, kd1 = 0.02; double min_angle = 30; // 80 90 - 10 double max_angle = 30; // 100 int Angle_Z; enum class AvoidanceState { TRACKING, // 正常循迹状态 AVOIDING, // 避障中 RETURNING // 回归跑道中 }; AvoidanceState current_state = AvoidanceState::TRACKING; chrono::steady_clock::time_point avoidance_start_time; const int AVOIDANCE_DURATION = 1500; // 避障动作持续时间(毫秒) void cd(char* path) { chdir(path); } bool crossing(Mat image) { Mat roi, labels, stats, centroids, hui; GetROI(image, roi); //imshow("roi", roi); cvtColor(roi, hui, COLOR_BGR2GRAY); Mat binaryImage; threshold(hui, binaryImage, 180, 255, cv::THRESH_BINARY); imshow("binaryImage", binaryImage); int numComponents = cv::connectedComponentsWithStats(binaryImage, labels, stats, centroids); int crossingnum = 0; for (int i = 1; i < numComponents; i++) { int area = stats.at<int>(i, cv::CC_STAT_AREA); if (area > 200) { crossingnum++; } // cout<<area<<endl; } cout << "CrossingNum:" << crossingnum << endl; if (crossingnum >= 4) { cout << "find crossing" << endl; return true; } return false; } void gpio_init(void) { if (gpioInitialise() < 0) exit(1); gpioSetMode(13, PI_OUTPUT); gpioSetPWMrange(13, 40000); gpioSetPWMfrequency(13, 200); gpioPWM(13, 12000); gpioDelay(1000000); gpioSetMode(22, PI_OUTPUT); gpioSetPWMfrequency(22, 50); gpioSetPWMrange(22, 1000); gpioPWM(22, 75); // gpioSetMode(23, PI_OUTPUT); gpioSetPWMfrequency(23, 50); gpioSetPWMrange(23, 1000); gpioPWM(23, 70); //大上下小 gpioSetMode(12, PI_OUTPUT); // 设置GPIO12为PWM输出 gpioSetPWMfrequency(12, 50); // 50Hz标准频率 gpioSetPWMrange(12, 30000); // 设置PWM范围 printf("GPIO initial successful"); } void steering(int angle) { double value = (0.5 + (2.0 / 180.0) * angle) / 20 * 30000; // 100;//20000 gpioPWM(12, value); } void Start_motor(void) { cout << "1" << endl; gpioPWM(13, 10600); //gpioDelay(1000000); /*for (int x = 12000; x >= 9000; x -= 300) { cout << x << endl; gpioPWM(13, x); gpioDelay(500000); }*/ // 第二次启动时,可以注释掉 下面部分 //cout << "2" << endl; //gpioPWM(13, 12000); //gpioDelay(1000000); // 到此为止 //cout << "3" << endl; //gpioPWM(13, 11000); //gpioDelay(1000000); //cout << "4" << endl; //gpioPWM(13, 10300); //double value = speed_init; // ???动慢??? //gpioPWM(13, value); } void Control_stop(void) { gpioPWM(13, 12600); // 刹车 gpioDelay(50000); gpioPWM(13, 12200); // 保护 //gpioDelay(3000000); //gpioPWM(13, speed_mid); // 冲刺 } int uart_open(int fd, const char* pathname) { fd = open(pathname, O_RDWR | O_NOCTTY); if (-1 == fd) { perror("Can&#39;t Open Serial Port"); return(-1); } else printf("open %s success!\n", pathname); if (isatty(STDIN_FILENO) == 0) printf("standard input is not a terminal device\n"); else printf("isatty success!\n"); return fd; } int uart_set(int fd, int nSpeed, int nBits, char nEvent, int nStop) { struct termios newtio, oldtio; if (tcgetattr(fd, &oldtio) != 0) { perror("SetupSerial 1"); printf("tcgetattr( fd,&oldtio) -> %d\n", tcgetattr(fd, &oldtio)); return -1; } bzero(&newtio, sizeof(newtio)); newtio.c_cflag |= CLOCAL | CREAD; newtio.c_cflag &= ~CSIZE; switch (nBits) { case 7: newtio.c_cflag |= CS7; break; case 8: newtio.c_cflag |= CS8; break; } switch (nEvent) { case &#39;o&#39;: case &#39;O&#39;: newtio.c_cflag |= PARENB; newtio.c_cflag |= PARODD; newtio.c_iflag |= (INPCK | ISTRIP); break; case &#39;e&#39;: case &#39;E&#39;: newtio.c_iflag |= (INPCK | ISTRIP); newtio.c_cflag |= PARENB; newtio.c_cflag &= ~PARODD; break; case &#39;n&#39;: case &#39;N&#39;: newtio.c_cflag &= ~PARENB; break; default: break; } /*设置波特率*/ switch (nSpeed) { case 2400: cfsetispeed(&newtio, B2400); cfsetospeed(&newtio, B2400); break; case 4800: cfsetispeed(&newtio, B4800); cfsetospeed(&newtio, B4800); break; case 9600: cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break; case 115200: cfsetispeed(&newtio, B115200); cfsetospeed(&newtio, B115200); break; case 460800: cfsetispeed(&newtio, B460800); cfsetospeed(&newtio, B460800); break; default: cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break; } if (nStop == 1) newtio.c_cflag &= ~CSTOPB; else if (nStop == 2) newtio.c_cflag |= CSTOPB; newtio.c_cc[VTIME] = 0; newtio.c_cc[VMIN] = 0; tcflush(fd, TCIFLUSH); if ((tcsetattr(fd, TCSANOW, &newtio)) != 0) { perror("com set error"); return -1; } printf("set done!\n"); return 0; } int uart_close(int fd) { assert(fd); close(fd); return 0; } int send_data(int fd, char* send_buffer, int length) { length = write(fd, send_buffer, length * sizeof(unsigned char)); return length; } int recv_data(int fd, char* recv_buffer, int length) { length = read(fd, recv_buffer, length); return length; } void Control_Xun(void) { int angle = kp * line_error + kd * (line_error - line_last_error); line_last_error = line_error; angle = 90 - angle; if (angle > 90 + max_angle) // 130 angle = 90 + max_angle; if (angle < 90 - min_angle) angle = 90 - min_angle; //cout <<"line_error"<<line_error<<"angle:" << angle << endl; //cout << "循迹处理完毕" << endl; steering(angle); } //void Control_avoid(void) { // const int DEAD_ZONE = 30; // 中心死区阈值(像素) // const int AVOID_ANGLE_OFFSET = 25; // 避让角度偏移量 // // // 1. 计算基础转向角度(PD控制) // // 注意:根据转向特性调整符号(angle越大越左转) // int angle = 90 + (kp1 * line_error1 + kd1 * (line_error1 - line_last_error1)); // line_last_error1 = line_error1; // // 2. 中心区域强制避让(关键修正) // if (abs(line_error1) < DEAD_ZONE) { // // 修正避让方向判断逻辑 // // 锥桶在右侧(line_error1 > 0):需要向左避让(增大角度) // // 锥桶在左侧(line_error1 < 0):需要向右避让(减小角度) // if (line_error1 > 0) { // angle = 90 + AVOID_ANGLE_OFFSET; // 向左避让 // } // else { // angle = 90 - AVOID_ANGLE_OFFSET; // 向右避让 // } // } // // // 3. 角度限幅保护(根据转向特性调整) // // 角度限幅在60-120度范围(90°为直行) // if (angle > 98) angle = 98; // 最大左转限制 // if (angle < 82) angle = 82; // 最大右转限制 // // cout << "avoid_angle:" << angle << endl; // steering(angle); //} // 修改Control_avoid函数,添加跑道保持逻辑 void Control_avoid(void) { const int DEAD_ZONE = 30; // 中心死区阈值(像素) const int AVOID_ANGLE_OFFSET = 25; // 避让角度偏移量 // 1. 获取当前跑道中心线偏差(来自循迹模块) int track_error = line_error; // 循迹偏差 // 2. 状态机控制 int base_angle = 90; switch (current_state) { case AvoidanceState::TRACKING: // 正常循迹控制 base_angle = 90 + (kp1 * track_error + kd1 * (track_error - line_last_error)); line_last_error = track_error; break; case AvoidanceState::AVOIDING: { // 避障控制逻辑 base_angle = 90 + (kp1 * line_error1 + kd1 * (line_error1 - line_last_error1)); line_last_error1 = line_error1; // 中心区域强制避让 if (abs(line_error1) < DEAD_ZONE) { if (line_error1 > 0) { base_angle = 90 + AVOID_ANGLE_OFFSET; } else { base_angle = 90 - AVOID_ANGLE_OFFSET; } } // 检查避障时间是否结束 auto now = chrono::steady_clock::now(); auto elapsed = chrono::duration_cast<chrono::milliseconds>(now - avoidance_start_time).count(); if (elapsed > AVOIDANCE_DURATION) { current_state = AvoidanceState::RETURNING; avoidance_start_time = now; // 重置计时器 } break; } case AvoidanceState::RETURNING: { // 回归跑道逻辑 int return_direction = (line_error1 > 0) ? -1 : 1; // 与避让方向相反 base_angle = 90 + return_direction * AVOID_ANGLE_OFFSET; // 添加循迹误差补偿 base_angle += track_error * 0.3; // 检查是否应该返回循迹状态 auto now = chrono::steady_clock::now(); auto elapsed = chrono::duration_cast<chrono::milliseconds>(now - avoidance_start_time).count(); // 条件1:回归时间结束(1秒) // 条件2:检测到两条跑道线(正常循迹状态) if (elapsed > 1000 || (abs(track_error) < 20)) { current_state = AvoidanceState::TRACKING; } break; } } // 3. 平滑过渡处理(防止角度突变) static int last_angle = 90; const int MAX_CHANGE = 8; // 最大角度变化率 if (abs(base_angle - last_angle) > MAX_CHANGE) { base_angle = last_angle + ((base_angle > last_angle) ? MAX_CHANGE : -MAX_CHANGE); } last_angle = base_angle; // 4. 角度限幅保护 if (base_angle > 110) base_angle = 110; // 最大左转限制 if (base_angle < 70) base_angle = 70; // 最大右转限制 // 5. 执行转向 steering(base_angle); // 调试信息 string state_str; switch (current_state) { case AvoidanceState::TRACKING: state_str = "TRACKING"; break; case AvoidanceState::AVOIDING: state_str = "AVOIDING"; break; case AvoidanceState::RETURNING: state_str = "RETURNING"; break; } cout << "State: " << state_str << " | Angle: " << base_angle << endl; } void GetROI(Mat src, Mat& ROI) { // 取得源图像的长和宽 int width = src.cols; int height = src.rows; Rect rect(Point(0, (height / 20) * 10), Point(width, (height / 20) * 17)); // 按比例截取 ROI = src(rect); // 赋值ROI } vector<Point2f> get_lines_fangcheng(vector<Vec4i> lines) { // 遍历概率霍夫变换检测到的直线 float k = 0; // 斜率 float b = 0; // 截距 vector<Point2f> lines_fangcheng; for (unsigned int i = 0; i < lines.size(); i++) { k = (double)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); b = (double)lines[i][1] - k * (double)lines[i][0]; lines_fangcheng.push_back(Point2f(k, b)); } return lines_fangcheng; } //Rect blue(Mat img) //{ // Mat HSV, roi; // GetROI(img, roi); // cvtColor(roi, HSV, COLOR_BGR2HSV); // Scalar Lower(100, 100, 50); // Scalar Upper(120, 255, 255); // Mat mask; // inRange(HSV, Lower, Upper, mask); // Mat erosion_dilation; // erode(mask, erosion_dilation, kernel_3, Point(-1, -1), 1, BORDER_CONSTANT, morphologyDefaultBorderValue()); // dilate(erosion_dilation, erosion_dilation, kernel_3, Point(-1, -1), 1, BORDER_CONSTANT, morphologyDefaultBorderValue()); // Mat target; // bitwise_and(roi, roi, target, erosion_dilation); // Mat binary; // threshold(erosion_dilation, binary, 127, 255, THRESH_BINARY); // imshow("blue", binary); // vector<vector<Point>> contours; // findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // int maxContourIndex = -1; // double maxContourArea = 0.0; // for (int i = 0; i < contours.size(); i++) // { // double area = cv::contourArea(contours[i]); // if (area > maxContourArea) // { // maxContourArea = area; // maxContourIndex = i; // } // } // if (maxContourIndex != -1) { // Rect boundRect = boundingRect(contours[maxContourIndex]); // return boundRect; // } // else { // return Rect(); // } //} //Rect Obstacles(Mat img)//识别到锥桶 //{ // Rect obstacle_object = blue(img);//识别到的蓝色物体 // if (obstacle_object.height > 5 && obstacle_object.height < 100)//对识别到的蓝色物体限幅, // { // rectangle(img, Point(obstacle_object.x, obstacle_object.y + frame.rows / 2), Point(obstacle_object.x + obstacle_object.width, obstacle_object.y + obstacle_object.height + frame.rows / 2), Scalar(0, 255, 0), 3); // return obstacle_object; // } // return Rect(); //} Rect blue(Mat img) { // 定义有效区域面积阈值 const int MIN_AREA = 0; // 最小面积阈值(像素) const int MAX_AREA = 5000; // 最大面积阈值(像素) Mat HSV, roi; GetROI(img, roi); cvtColor(roi, HSV, COLOR_BGR2HSV); // 改进:使用自适应HSV范围 Scalar Lower(100, 100, 50); Scalar Upper(120, 255, 255); // 改进:计算图像亮度并动态调整阈值 Scalar mean_val = mean(HSV); if (mean_val[2] > 150) { // 高亮度环境 Lower.val[1] = 120; // 增加饱和度下限 } else if (mean_val[2] < 50) { // 低亮度环境 Upper.val[2] = 200; // 降低明度上限 } Mat mask; inRange(HSV, Lower, Upper, mask); // 改进:增强形态学处理 Mat erosion_dilation; Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5, 5)); erode(mask, erosion_dilation, kernel, Point(-1, -1), 2); dilate(erosion_dilation, erosion_dilation, kernel, Point(-1, -1), 2); // 改进:添加开运算去除小噪点 morphologyEx(erosion_dilation, erosion_dilation, MORPH_OPEN, kernel); Mat target; bitwise_and(roi, roi, target, erosion_dilation); Mat binary; threshold(erosion_dilation, binary, 127, 255, THRESH_BINARY); imshow("blue", binary); vector<vector<Point>> contours; findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); int maxContourIndex = -1; double maxContourArea = 0.0; // 改进:添加宽高比约束 const float MIN_ASPECT_RATIO = 0.5; // 最小宽高比 const float MAX_ASPECT_RATIO = 2.0; // 最大宽高比 for (int i = 0; i < contours.size(); i++) { double area = cv::contourArea(contours[i]); // 跳过不满足面积条件的轮廓 if (area < MIN_AREA || area > MAX_AREA) continue; // 计算轮廓的边界矩形 Rect boundRect = boundingRect(contours[i]); float aspect_ratio = static_cast<float>(boundRect.width) / boundRect.height; // 跳过不满足宽高比的轮廓 if (aspect_ratio < MIN_ASPECT_RATIO || aspect_ratio > MAX_ASPECT_RATIO) continue; // 更新最大有效轮廓 if (area > maxContourArea) { maxContourArea = area; maxContourIndex = i; } } if (maxContourIndex != -1) { Rect boundRect = boundingRect(contours[maxContourIndex]); // 最终有效性检查(面积+宽高比) float aspect_ratio = static_cast<float>(boundRect.width) / boundRect.height; if (boundRect.area() >= MIN_AREA && boundRect.area() <= MAX_AREA && aspect_ratio >= MIN_ASPECT_RATIO && aspect_ratio <= MAX_ASPECT_RATIO) { return boundRect; } } return Rect(); // 返回空矩形表示未找到有效区域 } Rect Obstacles(Mat img) { Rect obstacle_object = blue(img); // 检测到有效锥桶 if (obstacle_object.height > 5 && obstacle_object.height < 100) { // 计算在原图中的坐标位置 int roi_offset_y = img.rows / 2; // ROI起始y坐标 Point topLeft(obstacle_object.x, obstacle_object.y + roi_offset_y); Point bottomRight(obstacle_object.x + obstacle_object.width, obstacle_object.y + obstacle_object.height + roi_offset_y); // 在原图上绘制绿色框 rectangle(img, topLeft, bottomRight, Scalar(0, 255, 0), 3); // 更新状态为避障中 if (current_state == AvoidanceState::TRACKING) { current_state = AvoidanceState::AVOIDING; avoidance_start_time = chrono::steady_clock::now(); } return obstacle_object; } return Rect(); } int car_start(Mat img) { Rect start_flag = blue(img); // cout << start_flag.width << " " << start_flag.height << endl; if (start_flag.width > 50 && start_flag.height > 50) { return 0; // ?????????? } return 1; // ????????I???? } void camera(int angl_x, int angl_y) { gpioPWM(22, angl_x);//大左小右 gpioPWM(23, angl_y); //大上下小 } void GPS_init(void) { char r_buf[1024]; bzero(r_buf, 1024); GPS = uart_open(GPS, "/dev/ttyUSB0");/*串口号/dev/ttySn,USB口号/dev/ttyUSBn */ if (GPS == -1) { fprintf(stderr, "GPS error\n"); exit(EXIT_FAILURE); } if (uart_set(GPS, BAUD, 8, &#39;N&#39;, 1) == -1) { fprintf(stderr, "GPS set failed!\n"); exit(EXIT_FAILURE); } } void ParseData(char chr) { static char chrBuf[100]; static unsigned char chrCnt = 0; signed short sData[4]; unsigned char i; time_t now; chrBuf[chrCnt++] = chr; if (chrCnt < 11) return; if ((chrBuf[0] != 0x55) || ((chrBuf[1] & 0x50) != 0x50)) { printf("Error:%x %x\r\n", chrBuf[0], chrBuf[1]); memcpy(&chrBuf[0], &chrBuf[1], 10); chrCnt--; return; } memcpy(&sData[0], &chrBuf[2], 8); switch (chrBuf[1]) { case 0x51: for (i = 0; i < 3; i++) a[i] = (float)sData[i] / 32768.0 * 16.0; time(&now); //printf("\r\nT:%s a:%6.3f %6.3f %6.3f ", asctime(localtime(&now)), a[0], a[1], a[2]); break; case 0x52: for (i = 0; i < 3; i++) w[i] = (float)sData[i] / 32768.0 * 2000.0; //printf("w:%7.3f %7.3f %7.3f ", w[0], w[1], w[2]); break; case 0x53: for (i = 0; i < 3; i++) Angle[i] = (float)sData[i] / 32768.0 * 180.0; //printf("A:%7.3f %7.3f %7.3f ", Angle[0], Angle[1], Angle[2]); Angle_Z = Angle[2] - 167; printf("Z:%d \r\n", Angle_Z); break; case 0x54: for (i = 0; i < 3; i++) h[i] = (float)sData[i]; //printf("h:%4.0f %4.0f %4.0f ", h[0], h[1], h[2]); break; } chrCnt = 0; } void Get_GPS_data(void) { while (1) { ret = recv_data(GPS, r_buf, 44); if (ret == -1) { fprintf(stderr, "uart read failed!\n"); exit(EXIT_FAILURE); } for (int i = 0; i < ret; i++) ParseData(r_buf[i]); usleep(1000); } //usleep(1000); } void audio(void) { system("omxplayer /home/pi/car435/car.wav"); } Mat HLS_Lthresh(const cv::Mat& img, int min_thresh = 220, int max_thresh = 255) { Mat hls; cvtColor(img, hls, COLOR_BGR2HLS); vector<Mat> channels; split(hls, channels); Mat l_channel = channels[1]; double minVal, maxVal; minMaxLoc(l_channel, &minVal, &maxVal); l_channel.convertTo(l_channel, CV_8UC1, 255.0 / maxVal); Mat binary_output = Mat::zeros(l_channel.size(), CV_8UC1); inRange(l_channel, min_thresh, max_thresh, binary_output); return binary_output; } Mat LAB_BThreshold(const Mat& img, int min_thresh = 190, int max_thresh = 255) { Mat lab; cvtColor(img, lab, COLOR_BGR2Lab); vector<Mat> lab_channels; split(lab, lab_channels); Mat b_channel = lab_channels[2]; //cout<<b_channel<<endl; double maxVal; minMaxLoc(b_channel, nullptr, &maxVal); //cout<<maxVal<<endl; if (maxVal > 175) { b_channel.convertTo(b_channel, CV_8UC1, 255.0 / maxVal); } Mat binary_output = Mat::zeros(b_channel.size(), CV_8UC1); inRange(b_channel, min_thresh, max_thresh, binary_output); return binary_output; } Mat combineThresholds(const Mat& img_LThresh, const Mat& img_BThresh) { Mat combined = Mat::zeros(img_BThresh.size(), CV_8UC1); bitwise_or(img_LThresh, img_BThresh, combined); return combined; } struct LaneData { vector<Point> left_points; vector<Point> right_points; vector<float> left_fit; vector<float> right_fit; vector<float> mid_fit; vector<Rect> left_windows; vector<Rect> right_windows; }; Mat getHistogram(const Mat& binary_img) { Mat hist; reduce(binary_img.rowRange(binary_img.rows / 2, binary_img.rows), hist, 0, REDUCE_SUM, CV_32S); return hist; } pair<int, int> findLaneBases(const Mat& hist) { int midpoint = hist.cols / 2; int quarter = midpoint / 2; Point left_base, right_base; minMaxLoc(hist.colRange(quarter, midpoint), 0, 0, 0, &left_base); minMaxLoc(hist.colRange(midpoint, midpoint + quarter), 0, 0, 0, &right_base); return { left_base.x + quarter, right_base.x + midpoint }; } LaneData slidingWindow(const Mat& binary_img, int nwindows = 9, int margin = 20, int minpix = 10) { LaneData result; auto [leftx, rightx] = findLaneBases(getHistogram(binary_img)); //cout<<"leftx:"<<leftx<<"rightx:"<<rightx<<endl; int window_height = binary_img.rows / nwindows; vector<Point> nonzero; findNonZero(binary_img, nonzero); for (int i = 0; i < nwindows; ++i) { int win_y_low = binary_img.rows - (i + 1) * window_height; int win_y_high = binary_img.rows - i * window_height; Rect left_win(leftx - margin, win_y_low, 2 * margin, window_height); Rect right_win(rightx - margin, win_y_low, 2 * margin, window_height); result.left_windows.push_back(left_win); result.right_windows.push_back(right_win); for (const auto& pt : nonzero) { if (left_win.contains(pt)) result.left_points.push_back(pt); if (right_win.contains(pt)) result.right_points.push_back(pt); } if (result.left_points.size() > minpix) leftx = mean(result.left_points)[0]; if (result.right_points.size() > minpix) rightx = mean(result.right_points)[0]; } return result; } vector<float> polyFit(const vector<Point>& points, int order = 2) { if (points.size() < order + 1) { cout << "data no enough for" << order << "profit" << endl; return {}; } Mat A(points.size(), order + 1, CV_32F); Mat B(points.size(), 1, CV_32F); for (size_t i = 0; i < points.size(); ++i) { float y = points[i].y; A.at<float>(i, 0) = y * y; A.at<float>(i, 1) = y; A.at<float>(i, 2) = 1.0f; B.at<float>(i, 0) = points[i].x; } Mat coeff; solve(A, B, coeff, DECOMP_SVD); //solve(A, B, coeff, DECOMP_QR); return { coeff.at<float>(0), coeff.at<float>(1), coeff.at<float>(2) }; } vector<float> calculateCenterLaneCoefficient(const vector<float>& left_fit, const vector<float>& right_fit) { if (left_fit.size() != 3 || right_fit.size() != 3) { cout << "Invalid polynomial coefficients" << endl; return {}; } vector<float> center_fit(3); center_fit[0] = (left_fit[0] + right_fit[0]) / 2.0f; // A 系数 center_fit[1] = (left_fit[1] + right_fit[1]) / 2.0f; // B 系数 center_fit[2] = (left_fit[2] + right_fit[2]) / 2.0f; // C 系数 //cout<<center_fit[0]<<center_fit[1]<<center_fit[2]<<endl; return center_fit; } float calculateXFromPolynomial(const vector<float>& fit, float y) { if (fit.size() != 3) return 0.0f; return fit[0] * y * y + fit[1] * y + fit[2]; } void visualize(Mat& img, const LaneData& data) { // 绘制滑动窗口 // for (const auto& win : data.left_windows) // rectangle(img, win, Scalar(0,255,0), 2); // for (const auto& win : data.right_windows) // rectangle(img, win, Scalar(0,255,0), 2); // 绘制车道线点 for (const auto& pt : data.left_points) circle(img, pt, 3, Scalar(255, 0, 0), -1); for (const auto& pt : data.right_points) circle(img, pt, 3, Scalar(0, 0, 255), -1); // 绘制拟合曲线 if (!data.left_fit.empty()) { for (int y = 0; y < img.rows; ++y) { int x = data.left_fit[0] * y * y + data.left_fit[1] * y + data.left_fit[2]; if (x >= 0 && x < img.cols) circle(img, Point(x, y), 2, Scalar(0, 0, 255), -1); } } if (!data.right_fit.empty()) { for (int y = 0; y < img.rows; ++y) { int x = data.right_fit[0] * y * y + data.right_fit[1] * y + data.right_fit[2]; if (x >= 0 && x < img.cols) circle(img, Point(x, y), 2, Scalar(0, 0, 255), -1); } } circle(img, Point(center_x, line_y), 3, Scalar(0, 255, 0), -1); } bool Contour_Area(vector<Point> contour1, vector<Point> contour2) { return contourArea(contour1) > contourArea(contour2); } Mat customEqualizeHist(const Mat& inputImage, float alpha) { Mat enhancedImage; equalizeHist(inputImage, enhancedImage); return alpha * enhancedImage + (1 - alpha) * inputImage; } void timer(void)//定时器中断 { TIMECOUNT++; std::cout << "timer:" << TIMECOUNT << std::endl; } void reset_timer(void)//定时器中断 { TIMECOUNT = 0; } //int PID(int error) //{ // const float Kp = 0.8f; // int output = static_cast<int>(Kp * error); // // output = max(-30, min(30, output)); // return output; //} int timer_interrupt(void)//定时器 { while (true) { //timer(); this_thread::sleep_for(chrono::milliseconds(50)); Control_Xun(); } return 0; } void onTrackbar(int, void*) { LAB_Bmin = getTrackbarPos("LAB_Bmin", "TrackBars"); LAB_Bmax = getTrackbarPos("LAB_Bmax", "TrackBars"); HSL_Lmin = getTrackbarPos("HSL_Lmin", "TrackBars"); HSL_Lmax = getTrackbarPos("HSL_Lmax", "TrackBars"); } void UI_init(void) { namedWindow("TrackBars", WINDOW_NORMAL); resizeWindow("TrackBars", 320, 240); moveWindow("TrackBars", 0, 50); // 设置窗口位置 createTrackbar("LAB_Bmin", "TrackBars", &LAB_Bmin, 255, onTrackbar); setTrackbarPos("LAB_Bmin", "TrackBars", LAB_Bmin); createTrackbar("LAB_Bmax", "TrackBars", &LAB_Bmax, 255, onTrackbar); setTrackbarPos("LAB_Bmax", "TrackBars", LAB_Bmax); createTrackbar("HSL_Lmin", "TrackBars", &HSL_Lmin, 255, onTrackbar); setTrackbarPos("HSL_Lmin", "TrackBars", HSL_Lmin); createTrackbar("HSL_Lmax", "TrackBars", &HSL_Lmax, 255, onTrackbar); setTrackbarPos("HSL_Lmax", "TrackBars", HSL_Lmax); } void onMouse(int event, int x, int y, int flags, void* userdata) { mousePos = Point(x, y); } void test(void) { while (1) { line_error = -100; this_thread::sleep_for(chrono::milliseconds(500)); line_error = 100; this_thread::sleep_for(chrono::milliseconds(500)); } } void find_blue_card(void)//检测到蓝色挡板 { vector<vector<Point>> contours; vector<Vec4i> hierarcy; findContours(img_HSV_mask, contours, hierarcy, RETR_EXTERNAL, CHAIN_APPROX_NONE); if (contours.size() > 0) { sort(contours.begin(), contours.end(), Contour_Area); //cout<<cStart_motorontours.size()<<endl; vector<vector<Point>> newContours; for (const vector<Point>& contour : contours) { Point2f center; float radius; minEnclosingCircle(contour, center, radius); if (center.y > 90 && center.y < 160) { newContours.push_back(contour); } } contours = newContours; if (contours.size() > 0) { if (contourArea(contours[0]) > 500) { cout << "find blue card" << endl; Point2f center; float radius; minEnclosingCircle(contours[0], center, radius); circle(img, center, static_cast<int>(radius), Scalar(0, 255, 0), 2); find_blue_card_flag = 1; } else { cout << "not blue card" << endl; } } } else { cout << "not blue card" << endl; } } void find_blue_card_remove(void)//蓝色挡板移开 { cout << "detecting blue card remove" << endl; vector<vector<Point>> contours; vector<Vec4i> hierarcy; findContours(img_HSV_mask, contours, hierarcy, RETR_EXTERNAL, CHAIN_APPROX_NONE); if (contours.size() > 0) { sort(contours.begin(), contours.end(), Contour_Area); vector<vector<Point>> newContours; for (const vector<Point>& contour : contours) { Point2f center; float radius; minEnclosingCircle(contour, center, radius); if (center.y > 90 && center.y < 160) { newContours.push_back(contour); } } contours = newContours; if (contours.size() == 0) { start_flag = 0; cout << "blue card remove" << endl; //Start_motor(); //sleep(2); } } else { start_flag = 0; cout << "blue card remove" << endl; //Start_motor(); //sleep(2); } } int crossroad(void)//斑马线识别 { VideoCapture capture; capture.open(2); if (!capture.isOpened()) { cout << "Can not open camera" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc(&#39;M&#39;, &#39;J&#39;, &#39;P&#39;, &#39;G&#39;)); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(2000)); //让图像稳定 cout << "Program started" << endl; Mat img_cross; Mat blur; while (1) { capture >> img_cross; GaussianBlur(img_cross, blur, Size(5, 5), 0); Mat hsv; cvtColor(blur, hsv, COLOR_BGR2HSV); Scalar lower_white = Scalar(0, 0, 200); Scalar upper_white = Scalar(180, 40, 255); Mat cross_mask; inRange(hsv, lower_white, upper_white, cross_mask); // Mat edges; // Canny(blur, edges, 50, 150); // bitwise_or(cross_mask, edges, cross_mask); Mat kernel = getStructuringElement(MORPH_RECT, Size(7, 7)); //dilate(mask1, mask1, kernel); //erode(mask1, mask1, kernel); morphologyEx(cross_mask, cross_mask, MORPH_CLOSE, kernel); //Rect roi(0,120,320,120);//shang Rect roi(0, 260, 640, 220);//xia Mat region = cross_mask(roi); //imshow("combined_image", region); //imshow("Full Mask", cross_mask); // 完整图像 //imshow("ROI Region", region); // 仅用于调试检测区 //imshow("combined_image", mask1_roi); int stripe_count = 0, transitions = 0; for (int i = 0; i < region.rows; i++) { transitions = 0; for (int j = 5; j < region.cols - 5; j++) { if (region.at<uchar>(i, j) != region.at<uchar>(i, j - 1)) transitions++; } //cout<<"transitions:"<<transitions<<endl; if (transitions >= 6) stripe_count++; } cross_flag = (stripe_count >= 16) ? 1 : 0; cout << "stripe_count" << stripe_count << "cross_flag:" << cross_flag << endl; if (cv::waitKey(1) == 27)break; } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 //uart_close(GPS); return 0; } Mat per_wt(Mat& frame) { int img_h, img_w; img_clone = frame.clone(); img_h = img_clone.rows; // 图像高度 img_w = img_clone.cols; vector<cv::Point2f> src = { Point2f(125, 198), Point2f(213, 198), Point2f(295, 237), Point2f(55, 237) }; vector<cv::Point2f> dst = { Point2f(100,0), Point2f(img_w - 100, 0), Point2f(img_w - 100, img_h), Point2f(100, img_h) }; // 定义目标坐标(变换后的四个点) vector<cv::Point> polygon; for (const auto& pt : src) { polygon.push_back(Point(static_cast<int>(pt.x), static_cast<int>(pt.y))); } polylines(img_clone, polygon, 1, Scalar(0, 0, 255), 3, cv::LINE_AA); // 计算透视变换矩阵 Mat M = getPerspectiveTransform(src, dst); Mat Minv = getPerspectiveTransform(dst, src); // 应用透视 warpPerspective(frame, warped, M, cv::Size(img_w, img_h), cv::INTER_LINEAR); waitKey(5); return warped; } int find_line(void) //循迹线程 { // 初始化程序 //UI_init(); VideoCapture capture; capture.open(0); if (!capture.isOpened()) { cout << "Can not open camera" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc(&#39;M&#39;, &#39;J&#39;, &#39;P&#39;, &#39;G&#39;)); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 cout << "Program started" << endl; while (1) { capture >> img; if (start_flag == 1) { cvtColor(img, img_HSV, COLOR_BGR2HSV); Scalar HSV_L = Scalar(100, 43, 46); Scalar HSV_H = Scalar(124, 255, 255); inRange(img_HSV, HSV_L, HSV_H, img_HSV_mask); Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5)); morphologyEx(img_HSV_mask, img_HSV_mask, MORPH_OPEN, kernel); morphologyEx(img_HSV_mask, img_HSV_mask, MORPH_CLOSE, kernel); if (find_blue_card_flag == 0)find_blue_card(); else find_blue_card_remove(); } else { img_per = per_wt(img); Mat HLS_Lresult = HLS_Lthresh(img_per, HSL_Lmin, HSL_Lmax); Mat LAB_Bresult = LAB_BThreshold(img_per, LAB_Bmin, LAB_Bmax); img_combined = combineThresholds(HLS_Lresult, LAB_Bresult); Mat white_image(img.size(), img.type(), Scalar::all(255)); LaneData lanes = slidingWindow(img_combined); lanes.left_fit = polyFit(lanes.left_points); lanes.right_fit = polyFit(lanes.right_points); if (lanes.left_fit.size() != 3 || lanes.right_fit.size() != 3) { if (lanes.left_fit.size() != 3)center_x = lanes.right_fit[0] * line_y * line_y + lanes.right_fit[1] * line_y + lanes.right_fit[2] - rail_width_pix; if (lanes.right_fit.size() != 3)center_x = lanes.left_fit[0] * line_y * line_y + lanes.left_fit[1] * line_y + lanes.left_fit[2] + rail_width_pix; cout << center_x << endl; } if (lanes.left_fit.size() == 3 && lanes.right_fit.size() == 3) { center_x = (lanes.right_fit[0] * line_y * line_y + lanes.right_fit[1] * line_y + lanes.right_fit[2] + lanes.left_fit[0] * line_y * line_y + lanes.left_fit[1] * line_y + lanes.left_fit[2]) / 2; cout << center_x << endl; } line_error = center_x - 160; //cout << left_x << "," << right_x << "," << center_x << "," << line_error << endl; visualize(white_image, lanes); //namedWindow("img", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("img", 320, 240); // 设置窗口尺寸 //moveWindow("img", 320, 50); // 设置窗口位置 //imshow("img", img_clone); //namedWindow("combined_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("combined_image", 320, 240); // 设置窗口尺寸 //moveWindow("combined_image", 640, 50); // 设置窗口位置 //imshow("combined_image", img_combined); //namedWindow("white_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("white_image", 320, 240); // 设置窗口尺寸 //moveWindow("white_image", 960, 50); // 设置窗口位置 //imshow("white_image", white_image); if (cross_flag == 1) { Control_stop(); audio(); break; } } if (cv::waitKey(1) == 27)break; //if(car_blake_flag == 1) ;//break;//结束代码 } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 //uart_close(GPS); return 0; } //————————————————————————— int Blue_cone(void) { VideoCapture capture; capture.open(2); if (!capture.isOpened()) { cout << "Error: Camera not available" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc(&#39;M&#39;, &#39;J&#39;, &#39;P&#39;, &#39;G&#39;)); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 640); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480); this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 cout << "Program started" << endl; current_state = AvoidanceState::TRACKING; while (1) { capture >> frame; if (!capture.read(frame)) { cout << "Frame read error!" << endl; break; } Rect cone = Obstacles(frame); imshow("blue_cone", frame); // 无论是否检测到锥桶都执行控制 Control_avoid(); if (waitKey(1) == 27) break; } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 return 0; } //————————————————————————-- int main() { gpioTerminate(); gpio_init(); GPS_init(); camera(72, 86); steering(90); thread thread1(find_line);//循迹线程 thread thread2(Get_GPS_data);//test thread thread3(timer_interrupt);//定时器功能 thread thread4(crossroad); thread thread5(Blue_cone);//避障线程 thread1.join(); thread2.join(); thread3.join(); thread4.join(); thread5.join(); return 0;//GPS_init(); } //取数据调试的main函数 //int main(void) //{ // UI_init(); // gpioTerminate(); // gpio_init(); // camera(72,86); // steering(90); // // Mat img = imread("C:/Users/wtcat/CLionProjects/untitled7/test_images/225.jpg",IMREAD_COLOR_BGR); // // if(img.empty()) // // { // // std::cerr << "Error: Could not load the image" << std::endl; // // return -1; // // } // VideoCapture capture; // capture.open(2); // if (!capture.isOpened()) // { // cout << "Can not open camera!" << std::endl; // return -1; // } // capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc(&#39;M&#39;, &#39;J&#39;, &#39;P&#39;, &#39;G&#39;)); // capture.set(cv::CAP_PROP_FPS, 30); // capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); // capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); // this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 // Mat img_per,img_combined; // string windowName = "XY"; // namedWindow(windowName, WINDOW_AUTOSIZE); // setMouseCallback(windowName, onMouse, NULL); // while (1) // { // capture>>img; // img_per=per_wt(img); // string coordText = "X=" + to_string(mousePos.x) + " Y=" + to_string(mousePos.y); // putText(img_clone, coordText, Point(15, 35),FONT_HERSHEY_SIMPLEX, 0.7, Scalar(0, 255, 100), 2); // moveWindow(windowName, 320, 50); // imshow(windowName, img_clone); // Mat HLS_Lresult = HLS_Lthresh(img_per,HSL_Lmin,HSL_Lmax); // Mat LAB_Bresult = LAB_BThreshold(img_per,LAB_Bmin,LAB_Bmax); // img_combined=combineThresholds(HLS_Lresult, LAB_Bresult); // //img_combined=HLS_Lresult; // Mat white_image(img.size(), img.type(), Scalar::all(255)); // LaneData lanes = slidingWindow(img_combined); // lanes.left_fit = polyFit(lanes.left_points); // lanes.right_fit = polyFit(lanes.right_points); // visualize(white_image, lanes); // namedWindow("combined_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 // resizeWindow("combined_image", 320, 240); // 设置窗口尺寸 // moveWindow("combined_image", 640, 50); // 设置窗口位置 // imshow("combined_image", img_combined); // namedWindow("white_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 // resizeWindow("white_image", 320, 240); // 设置窗口尺寸 // moveWindow("white_image", 960,50); // 设置窗口位置 // imshow("white_image", white_image); // if (cv::waitKey(1) == 27) // { // break; // } // //if(car_blake_flag == 1) ;//break;//结束代码 // } // capture.release(); // 释放摄像头 // destroyAllWindows(); // 关闭所有窗口 // return 0; //}现在,在跑道尽头有一块停车区域(将跑道一分为二分左右两侧,并分别贴着AB标识),在停车区域前贴有一块标识(A或B),小车要识别到A或者B,并跑进相应的停车区域停车,停车区域有一条黄线横在跑道上,AB标识均为蓝底白字,黄线和指示牌均贴在地上,是先识别到一个指示牌A或B然后根据他再往前走识别到黄线及黄线后方两块区域AB停进相应的区域。请帮我补程序
最新发布
11-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值