pytorch -- expand 和 expand_as

部署运行你感兴趣的模型镜像

1. expand(size)

示例:

x = torch.rand(1,2,3)
print(x)
print("x.shape:", x.shape)
y = x.expand(2, 2,3)
print(y)
print("y.shape:", y.shape)

输出:

tensor([[[0.8020, 0.2300, 0.8632],
         [0.9463, 0.0172, 0.9756]]])
x.shape: torch.Size([1, 2, 3])

tensor([[[0.8020, 0.2300, 0.8632],
         [0.9463, 0.0172, 0.9756]],

        [[0.8020, 0.2300, 0.8632],
         [0.9463, 0.0172, 0.9756]]])
y.shape: torch.Size([2, 2, 3])

注意
expand只能对被操作的tensor中维数为1的维度进行扩展,例如上面的示例中只能对第维度扩展,如果改成x.expand(1, 4, 3)会报错,线面介绍的expand_as和expand几乎一样, expand_as出入的参数是一个tensor

2. tensor.expand_as(tensor1)

示例:

x = torch.rand(1,2,3)
z = torch.rand(3, 2,3)
print(x)
print("x.shape:", x.shape)
y = x.expand_as(z)
print(y)
print("y.shape:", y.shape)

输出:

tensor([[[0.5696, 0.3571, 0.2565],
         [0.9646, 0.5754, 0.7819]]])
x.shape: torch.Size([1, 2, 3])

tensor([[[0.5696, 0.3571, 0.2565],
         [0.9646, 0.5754, 0.7819]],

        [[0.5696, 0.3571, 0.2565],
         [0.9646, 0.5754, 0.7819]],

        [[0.5696, 0.3571, 0.2565],
         [0.9646, 0.5754, 0.7819]]])
y.shape: torch.Size([3, 2, 3])

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

pytorch跑项目显示usage: run.py [-h] --task_name TASK_NAME --is_training IS_TRAINING --model_id MODEL_ID --model MODEL --data DATA [--root_path ROOT_PATH] [--data_path DATA_PATH] [--features FEATURES] [--target TARGET] [--freq FREQ] [--checkpoints CHECKPOINTS] [--seq_len SEQ_LEN] [--label_len LABEL_LEN] [--pred_len PRED_LEN] [--seasonal_patterns SEASONAL_PATTERNS] [--inverse] [--mask_rate MASK_RATE] [--anomaly_ratio ANOMALY_RATIO] [--expand EXPAND] [--d_conv D_CONV] [--top_k TOP_K] [--num_kernels NUM_KERNELS] [--enc_in ENC_IN] [--dec_in DEC_IN] [--c_out C_OUT] [--d_model D_MODEL] [--n_heads N_HEADS] [--e_layers E_LAYERS] [--d_layers D_LAYERS] [--d_ff D_FF] [--moving_avg MOVING_AVG] [--factor FACTOR] [--distil] [--dropout DROPOUT] [--embed EMBED] [--activation ACTIVATION] [--channel_independence CHANNEL_INDEPENDENCE] [--decomp_method DECOMP_METHOD] [--use_norm USE_NORM] [--down_sampling_layers DOWN_SAMPLING_LAYERS] [--down_sampling_window DOWN_SAMPLING_WINDOW] [--down_sampling_method DOWN_SAMPLING_METHOD] [--seg_len SEG_LEN] [--num_workers NUM_WORKERS] [--itr ITR] [--train_epochs TRAIN_EPOCHS] [--batch_size BATCH_SIZE] [--patience PATIENCE] [--learning_rate LEARNING_RATE] [--des DES] [--loss LOSS] [--lradj LRADJ] [--use_amp] [--use_gpu USE_GPU] [--gpu GPU] [--use_multi_gpu] [--devices DEVICES] [--p_hidden_dims P_HIDDEN_DIMS [P_HIDDEN_DIMS ...]] [--p_hidden_layers P_HIDDEN_LAYERS] [--use_dtw USE_DTW] [--augmentation_ratio AUGMENTATION_RATIO] [--seed SEED] [--jitter] [--scaling] [--permutation] [--randompermutation] [--magwarp] [--timewarp] [--windowslice] [--windowwarp] [--rotation] [--spawner] [--dtwwarp] [--shapedtwwarp] [--wdba] [--discdtw] [--discsdtw] [--extra_tag EXTRA_TAG] run.py: error: the following arguments are required: --task_name, --is_training, --model_id, --model, --data 该怎么办
最新发布
05-29
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值