A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
N是十进制的,化为D进制存入数组,反一下后再化为十进制判断是否为素数。
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
bool isp(int x)
{
if (x<2) return false;
for (int i=2;i<=sqrt(x);i++)
if (x%i==0) return false;
return true;
}
int main()
{
int n,m,i,j,k;
int a[33],b[33];
while (true)
{
scanf("%d",&n);
if (n<0) break;
scanf("%d",&m);
int cnt=0;
k=n;
while (k)
{
a[cnt++]=k%m;
k/=m;
}
int t=0;
for (i=cnt-1;i>=0;i--)
b[t++]=a[i];
int now=1;int sum=0;
for (i=0;i<t;i++)
{
sum=b[i]*now+sum;
now*=m;
}
if (isp(n)&&isp(sum))
printf("Yes\n");
else printf("No\n");
}
return 0;
}