欢迎使用优快云-markdown编辑器

本文列举了25个Java机器学习的工具与库,包括Weka、MassiveOnlineAnalysis、MEKA等,覆盖数据预处理、分类、回归、聚类、可视化等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面是25个Java机器学习的工具&&库列表:

  1. Weka 是一个数据挖掘任务机器学习算法的集合。这些算法可以直接应用于数据集或者在你自己的Java代码中调用。Weka 包含 数据预处理、分类、回归、聚类、关联规则、可视化 等工具。

  2. Massive Online Analysis (MOA) 是一个非常流行的数据挖掘方面的开源框架,它有一个非常活跃的社区。它包括一组机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。同 WEKA 项目一样,MOA 也是用Java编写的,但却扩展的更高。

  3. MEKA 项目提供了多标记学习和评价方法的一个开源实现。在多标记分类中,我们要为每个输入实例预测多个输出变量。这不同于仅涉及单个目标变量的“标准”的情况。 MEKA是基于WEKA机器学习工具包。

  4. Advanced Data mining And Machine learning System (ADAMS) 是一种新型的,灵活的工作引擎,旨在快速构建和维护现实世界,复杂的知识流程,基于GPLv3发布。

  5. Environment for Developing KDD-Applications Supported by Index-Structure (ELKI) 是用Java编写的开源的(AGPLv3) 数据挖掘软件。ELKI 的重点是研究unsupervised methods in cluster analysis and outlier detection算法。

  6. Mallet 是一个Java文本文档的机器学习工具包。Mallet 支持最大熵、naive bayes以及决策树分类算法。

  7. Encog 是一种先进的机器学习框架,支持 Support Vector Machines,人工神经网络,遗传编程,贝叶斯网络,Hidden Markov Models,遗传编程和遗传算法。

  8. Datumbox 是一个用Java编写的开源机器学习框架,允许快速开发机器学习和统计应用。该框架的主要重点是,包括大量的机器学习算法和统计测试,并能够处理中等规模的数据集。

  9. Deeplearning4j 是第一个使用Java和Scala编写的商业级的、开源的、分布式深度学习库。它的目的是在商业环境中使用,而不是作为一种研究工具。

  10. Mahout 是一个带有内置算法的机器学习框架,Mahout-Samsara 帮助人们创建自己的数学,同时提供一些现成的算法实现。

  11. Rapid Miner 是由德国的多特蒙德大学开发的。它为用户创建自己的应用提供了图形用户界面和Java API。它提供了数据处理,可视化和机器学习算法建模。

  12. Apache SAMOA 是一个机器学习框架。包含了一个分布式流媒体编程抽象ML算法,使开发新的ML算法不用直接处理复杂的底层分布式流处理引擎(DSPEe, 如 Apache Storm, Apache S4, 和 Apache Samza)。它的用户可以一次开发分布式流媒体ML算法,并执行多个DSPEs。

  13. Neuroph 通过提供支持创建、培训并保存神经网络的Java神经网络简化了神经网络的发展。

  14. Oryx 2 是一个建立在Apache Spark 和 Apache Kafka之上,但专业化的实时大规模机器学习的 lambda 架构。它是一个创建应用的框架,但同时提供了包,以及协同过滤、分类、回归和聚类的终端到终端的应用程序。

  15. Stanford Classifier 是一个机器学习工具,得到数据并把它们分成 K 类。这个软件是一个Java实现的最大熵分类器。

  16. Cortical.io 是一个快速、精确、像大脑一样的Retina API 。

  17. JSAT 是一个机器学习快速入门的库。它是我业余时间开发的,可以在GPL 3下使用。库的一部分是自我教育,因此,所有的代码是自包含的。JSAT是纯Java的,没有外部的依赖。

  18. N-Dimensional Arrays for Java (ND4J) 是一个 JVM 的科学计算库。它们是用来在生产环境中使用的,这意味着程序的设计是以最小的内存需求来运行的。

  19. Java Machine Learning Library 是一组机器学习算法的参考实现。这些算法都是有记录的,包括源代码,都记录在文档网站。它主要是用Java编写的。

  20. Java-ML 是一个Java API,是一个Java实现的机器学习算法的集合。它只提供了一个标准的算法接口。

  21. MLlib (Spark) 是一个 Apache Spark 扩展的机器学习库。虽然是Java,但该库提供Java, Scala 以及 Python 绑定。库是新的,并且算法的列表很长。

  22. H2O 是一个智能应用的机器学习 API。它扩展了统计、机器学习以及大数据的运算。H2O 是可扩展的。

  23. WalnutiQ 是一个理论上与部分人脑有共同学习算法的面向对象的模型(工作目标是一个简单的带有情感的人工智能模型)。

  24. RankLib 是一个排序学习算法库。目前已经实现了八种流行的算法。

  25. htm.java (Hierarchical Temporal Memory implementation in Java) 是智能学习平台 Numenta 的一个Java端口。

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 这个HTML文件是一个专门设计的网页,适合在告白或纪念日这样的特殊时刻送给女朋友,给她带来惊喜。它通过HTML技术,将普通文字转化为富有情感和创意的表达方式,让数字媒体也能传递深情。HTML(HyperText Markup Language)是构建网页的基础语言,通过标签描述网页结构和内容,让浏览器正确展示页面。在这个特效网页中,开发者可能使用了HTML5的新特性,比如音频、视频、Canvas画布或WebGL图形,来提升视觉效果和交互体验。 原本这个文件可能是基于ASP.NET技术构建的,其扩展名是“.aspx”。ASP.NET是微软开发的一个服务器端Web应用程序框架,支持多种编程语言(如C#或VB.NET)来编写动态网页。但为了在本地直接运行,不依赖服务器,开发者将其转换为纯静态的HTML格式,只需浏览器即可打开查看。 在使用这个HTML特效页时,建议使用Internet Explorer(IE)浏览器,因为一些老的或特定的网页特效可能只在IE上表现正常,尤其是那些依赖ActiveX控件或IE特有功能的页面。不过,由于IE逐渐被淘汰,现代网页可能不再对其进行优化,因此在其他现代浏览器上运行可能会出现问题。 压缩包内的文件“yangyisen0713-7561403-biaobai(html版本)_1598430618”是经过压缩的HTML文件,可能包含图片、CSS样式表和JavaScript脚本等资源。用户需要先解压,然后在浏览器中打开HTML文件,就能看到预设的告白或纪念日特效。 这个项目展示了HTML作为动态和互动内容载体的强大能力,也提醒我们,尽管技术在进步,但有时复古的方式(如使用IE浏览器)仍能唤起怀旧之情。在准备类似的个性化礼物时,掌握基本的HTML和网页制作技巧非常
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值