介绍一下vmalloc的整个分配过程:
vmalloc
-------->__vmalloc_node_flags
--------->__vmalloc_node
------------>__vmalloc_node_range
先看一下__vmalloc_node:
static void *__vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, pgprot_t prot,
int node, const void *caller)
{
return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
gfp_mask, prot, node, caller);
}
可以看到vmalloc分配的虚拟内存的地址范围是VMALLOC_START ~~~VMALLOC_END
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_END 0xff000000UL
vmalloc分配的地址位于高端内存之上,再偏移8M,接着分析__vmalloc_node_range:
void *__vmalloc_node_range(unsigned long size, unsigned long align,
unsigned long start, unsigned long end, gfp_t gfp_mask,
pgprot_t prot, int node, const void *caller)
{
struct vm_struct *area;
void *addr;
unsigned long real_size = size;
size = PAGE_ALIGN(size);
if (!size || (size >> PAGE_SHIFT) > totalram_pages)
goto fail;
分配虚拟地址,并记录在vm_struct 中
area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
start, end, node, gfp_mask, caller);
if (!area)
goto fail;
把该虚拟地址映射到一个物理页上
addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
if (!addr)
return NULL;
/*
* In this function, newly allocated vm_struct has VM_UNLIST flag.
* It means that vm_struct is not fully initialized.
* Now, it is fully initialized, so remove this flag here.
*/
clear_vm_unlist(area);
/*
* A ref_count = 3 is needed because the vm_struct and vmap_area
* structures allocated in the __get_vm_area_node() function contain
* references to the virtual address of the vmalloc'ed block.
*/
kmemleak_alloc(addr, real_size, 3, gfp_mask);
return addr;
fail:
warn_alloc_failed(gfp_mask, 0,
"vmalloc: allocation failure: %lu bytes\n",
real_size);
return NULL;
}
先看__get_vm_area_node:
static struct vm_struct *__get_vm_area_node(unsigned long size,
unsigned long align, unsigned long flags, unsigned long start,
unsigned long end, int node, gfp_t gfp_mask, const void *caller)
{
struct vmap_area *va;
struct vm_struct *area;
BUG_ON(in_interrupt());
if (flags & VM_IOREMAP) {
int bit = fls(size);
if (bit > IOREMAP_MAX_ORDER)
bit = IOREMAP_MAX_ORDER;
else if (bit < PAGE_SHIFT)
bit = PAGE_SHIFT;
align = 1ul << bit;
}
size = PAGE_ALIGN(size);
if (unlikely(!size))
return NULL;
先向slab系统申请一个vm_struct结构
area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!area))
return NULL;
/*
* We always allocate a guard page.
*/
size += PAGE_SIZE;
然后从空闲的虚拟地址中申请一块虚拟内存,用vmap_area管理
va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
if (IS_ERR(va)) {
kfree(area);
return NULL;
}
/*
* When this function is called from __vmalloc_node_range,
* we add VM_UNLIST flag to avoid accessing uninitialized
* members of vm_struct such as pages and nr_pages fields.
* They will be set later.
*/
if (flags & VM_UNLIST) 把vmap_area和vm_struct关联起来,最终返回vm_struct
setup_vmalloc_vm(area, va, flags, caller);
else
insert_vmalloc_vm(area, va, flags, caller);
return area;
}
vm_struct通过和page结构相联系用来描述虚拟空间和物理地址的映射关系,而vmap_area用来管理内核的虚拟空间,内核利用红黑树算法,把vmap_area都挂载在全局链表vmap_area_root.rb_node;的红黑树上,以此来加快内存的搜索,所以kernel空间的虚存都是共享的。
static struct vmap_area *alloc_vmap_area(unsigned long size,
unsigned long align,
unsigned long vstart, unsigned long vend,
int node, gfp_t gfp_mask)
{
struct vmap_area *va;
struct rb_node *n;
unsigned long addr;
int purged = 0;
struct vmap_area *first;
BUG_ON(!size);
BUG_ON(size & ~PAGE_MASK);
BUG_ON(!is_power_of_2(align));
va = kmalloc_node(sizeof(struct vmap_area),
gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!va))
return ERR_PTR(-ENOMEM);
retry:
spin_lock(&vmap_area_lock);
/*
* Invalidate cache if we have more permissive parameters.
* cached_hole_size notes the largest hole noticed _below_
* the vmap_area cached in free_vmap_cache: if size fits
* into that hole, we want to scan from vstart to reuse
* the hole instead of allocating above free_vmap_cache.
* Note that __free_vmap_area may update free_vmap_cache
* without updating cached_hole_size or cached_align.
*/
if (!free_vmap_cache ||
size < cached_hole_size ||
vstart < cached_vstart ||
align < cached_align) {
nocache:
cached_hole_size = 0;
free_vmap_cache = NULL;
}
/* record if we encounter less permissive parameters */
cached_vstart = vstart;
cached_align = align;
搜索红黑树,在指定的start和end 范围中,找到一块大小为size的空闲内存块
/* find starting point for our search */
if (free_vmap_cache) {
first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
addr = ALIGN(first->va_end, align);
if (addr < vstart)
goto nocache;
if (addr + size - 1 < addr)
goto overflow;
} else {
addr = ALIGN(vstart, align);
if (addr + size - 1 < addr)
goto overflow;
n = vmap_area_root.rb_node;
first = NULL;
while (n) {
struct vmap_area *tmp;
tmp = rb_entry(n, struct vmap_area, rb_node);
if (tmp->va_end >= addr) {
first = tmp;
if (tmp->va_start <= addr)
break;
n = n->rb_left;
} else
n = n->rb_right;
}
if (!first)
goto found;
}
/* from the starting point, walk areas until a suitable hole is found */
while (addr + size > first->va_start && addr + size <= vend) {
if (addr + cached_hole_size < first->va_start)
cached_hole_size = first->va_start - addr;
addr = ALIGN(first->va_end, align);
if (addr + size - 1 < addr)
goto overflow;
if (list_is_last(&first->list, &vmap_area_list))
goto found;
first = list_entry(first->list.next,
struct vmap_area, list);
}
found:
if (addr + size > vend)
goto overflow;
va->va_start = addr;
va->va_end = addr + size;
va->flags = 0;
把该找到的符合条件的内内存块插入红黑树,标记为使用
__insert_vmap_area(va);
free_vmap_cache = &va->rb_node;
spin_unlock(&vmap_area_lock);
BUG_ON(va->va_start & (align-1));
BUG_ON(va->va_start < vstart);
BUG_ON(va->va_end > vend);
return va;
overflow:
spin_unlock(&vmap_area_lock);
if (!purged) {
purge_vmap_area_lazy();
purged = 1;
goto retry;
}
if (printk_ratelimit())
printk(KERN_WARNING
"vmap allocation for size %lu failed: "
"use vmalloc=<size> to increase size.\n", size);
kfree(va);
return ERR_PTR(-EBUSY);
}
上面函数就是搜索红黑树,找到满足条件的空闲内存块,然后调用setup_vmalloc_vm,把vmap_area中的地址设置到vm_struct中,并把两者关联起来。再看__vmalloc_area_node,为虚拟地址和物理地址建立映射关系:
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
pgprot_t prot, int node, const void *caller)
{
const int order = 0;
struct page **pages;
unsigned int nr_pages, array_size, i;
gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
array_size = (nr_pages * sizeof(struct page *));
area->nr_pages = nr_pages;
/* Please note that the recursion is strictly bounded. */
if (array_size > PAGE_SIZE) { 大于一页,用vmalloc机制申请内存,变成递归调用了
pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
PAGE_KERNEL, node, caller);
area->flags |= VM_VPAGES;
} else {
小于一页,利用slab机制分配内存
pages = kmalloc_node(array_size, nested_gfp, node);
}
area->pages = pages;
area->caller = caller;
if (!area->pages) {
remove_vm_area(area->addr);
kfree(area);
return NULL;
}
for (i = 0; i < area->nr_pages; i++) {
struct page *page;
gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
if (node < 0) 每次向伙伴系统申请一个页
page = alloc_page(tmp_mask);
else
page = alloc_pages_node(node, tmp_mask, order);
if (unlikely(!page)) {
/* Successfully allocated i pages, free them in __vunmap() */
area->nr_pages = i;
goto fail;
}
area->pages[i] = page;
}
把上面申请的页建立页表
if (map_vm_area(area, prot, &pages))
goto fail;
return area->addr;
fail:
warn_alloc_failed(gfp_mask, order,
"vmalloc: allocation failure, allocated %ld of %ld bytes\n",
(area->nr_pages*PAGE_SIZE), area->size);
vfree(area->addr);
return NULL;
}
上面函数向伙伴系统申请物理页面,每次只申请一个页面,所以可能会导致物理内存不连续,然后调用map_vm_area建立页表,把虚拟地址和物理地址映射起来:
map_vm_area
-------->vmap_page_range
----------->vmap_page_range_noflush
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
pgprot_t prot, struct page **pages)
{
pgd_t *pgd;
unsigned long next;
unsigned long addr = start;
int err = 0;
int nr = 0;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);根据虚拟地址先算出页目录地址
do {
next = pgd_addr_end(addr, end);算出下一个页目录地址
err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);填写页目录和页表
if (err)
return err;
} while (pgd++, addr = next, addr != end);
return nr;
}
需要注意的是vmalloc分配的页表,都是填写在init进程的页目录里的,其他进程在内核态访问该块空间时,都是在缺页异常中完成的,在缺页异常中会把init进程的页表复制到进程的页表中:
index = pgd_index(addr);
pgd = cpu_get_pgd() + index; //从页表寄存器获取出错的页目录地址
pgd_k = init_mm.pgd + index;//获取init进程的页目录地址
if (pgd_none(*pgd_k))
goto bad_area;
if (!pgd_present(*pgd))
set_pgd(pgd, *pgd_k);
pud = pud_offset(pgd, addr);
pud_k = pud_offset(pgd_k, addr);
if (pud_none(*pud_k))
goto bad_area;
if (!pud_present(*pud))
set_pud(pud, *pud_k);
pmd = pmd_offset(pud, addr);
pmd_k = pmd_offset(pud_k, addr);
#ifdef CONFIG_ARM_LPAE
/*
* Only one hardware entry per PMD with LPAE.
*/
index = 0;
#else
/*
* On ARM one Linux PGD entry contains two hardware entries (see page
* tables layout in pgtable.h). We normally guarantee that we always
* fill both L1 entries. But create_mapping() doesn't follow the rule.
* It can create inidividual L1 entries, so here we have to call
* pmd_none() check for the entry really corresponded to address, not
* for the first of pair.
*/
index = (addr >> SECTION_SHIFT) & 1;
#endif
if (pmd_none(pmd_k[index]))
goto bad_area;
copy_pmd(pmd, pmd_k);
32位linux系统pmd和pud都是等于页目录的,所以直接看最后的调用函数:
vmap_pud_range
-------->vmap_pmd_range
--------->vmap_pte_range
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pte_t *pte;
/*
* nr is a running index into the array which helps higher level
* callers keep track of where we're up to.
*/
pte = pte_alloc_kernel(pmd, addr); pmd是页目录地址,根据页目录地址得到其指向的页表项地址
if (!pte)
return -ENOMEM;
do {
struct page *page = pages[*nr];
if (WARN_ON(!pte_none(*pte)))
return -EBUSY;
if (WARN_ON(!page))
return -ENOMEM;
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 填充页表,完成映射
(*nr)++;
} while (pte++, addr += PAGE_SIZE, addr != end);
return 0;
}
上面函数先调用pte_alloc_kernel为得到具体的页地址,这边分为两步,如果之前已经填充过页目录,那么页目录指向的页表项已经存在,只是页中的内容可以还没有映射到真正的物理地址,则直接拿到该页的地址等下一步进行填充,还有一种可能是页目录还没有被填充,则先分配一个内存页作为页表项,并把该地址填充到页目录中,接着根据页表项内偏移搜索该页表项中的具体页地址,并把该页地址返回,等待进一步填充完成映射。
#define pte_alloc_kernel(pmd, address) \
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
NULL: pte_offset_kernel(pmd, address))
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
pte_t *new = pte_alloc_one_kernel(&init_mm, address);申请了4K空间,用来放页表
if (!new)
return -ENOMEM;
smp_wmb(); /* See comment in __pte_alloc */
spin_lock(&init_mm.page_table_lock);
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
pmd_populate_kernel(&init_mm, pmd, new);填充页目录
new = NULL;
} else
VM_BUG_ON(pmd_trans_splitting(*pmd));
spin_unlock(&init_mm.page_table_lock);
if (new)
pte_free_kernel(&init_mm, new);
return 0;
}
上面函数申请了一页,4K 空间用来放页表,其中2K空间用来linux系统自己维护,剩下的2K,总共有512个页,一个1M的页目录对应256个页,所以一下可以填充两个页目录,在pmd_populate_kernel中确实填充了两个页目录,具体页和页目录的映射关系如果忘了的话,再回顾下这篇文章:
https://blog.youkuaiyun.com/oqqYuJi12345678/article/details/96029177
pte_alloc_kernel返回页表的地址,然后利用mk_pte(page, prot)函数为页表把物理地址和标志位结合起来,最后调用set_pte_at把这个物理地址填写到页表中,至此,虚拟映射完成。vmalloc返回的虚拟地址已经可以使用了。
其他一些详解,可以参照这篇博文:
https://blog.youkuaiyun.com/chenying126/article/details/78511617