15、时间序列分析与无监督学习方法详解

时间序列分析与无监督学习方法详解

在数据分析和机器学习领域,时间序列分析和无监督学习是两个重要的方向。时间序列分析常被用于预测未来值,而无监督学习则有助于发现数据中的潜在结构。下面将详细介绍相关的方法和技术。

1. 自相关检验与ARIMA模型构建

1.1 自相关检验

在对时间序列进行分析时,首先要确定对数时间序列至少需要进行一阶差分才能达到平稳。接下来,我们绘制一阶对数序列的自相关函数(ACF)和偏自相关函数(PACF)图。

import matplotlib.pyplot as plt
import statsmodels.api as sm
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error

# 假设ts_log_diff是一阶对数差分后的时间序列
fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (10,3))
# ACF chart
fig = sm.graphics.tsa.plot_acf(ts_log_diff.values.squeeze(), lags=20, ax=ax1)
# draw 95% confidence interval line
ax1.axhline(y=-1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
ax1.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle='--',
跟网型逆变器小干扰稳定性分析控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值