受众画像数据只是看看?——基于朴素贝叶斯的用户数据挖掘

本文介绍了如何利用朴素贝叶斯算法对广告受众画像数据进行分析,通过一个真实的今日头条家装类案例,展示了如何挖掘转化率预测模型。在广告数据分析中,朴素贝叶斯算法能有效处理媒体提供的有限数据,实现精准定向下的转化率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据
作者:齐云涧

做广告优化这么久了,也看过不少广告后台的受众画像,总体来说,对广告数据分析和效果优化的参考价值有限,不过聊胜于无。

究其原因,在于很多广告后台的受众画像数据,只告诉了我们看了广告的这部分人群是什么样的,而缺失了发生转化的这部分用户的画像数据。原因主要有两点:

一是在大部分广告投放过程中,前后端数据是割裂的,换句话说,媒体能知道你花钱买的广告给了谁看,但一般不知道哪些人发生了转化;而甲方通过自己的监测,可以知道转化的用户是哪一部分,如果监测做得够好,也能知道这部分的人群画像,但人群画像的判定标准与媒体方可能存在差异,统计口径不一致,数据无法人工打通。

二是媒体不愿意公开这么多的数据,甚至受众画像本身都有一定的问题。

如今信息流优化已经成为业内交流的热点,优化创意、定向等已是老生常谈,唯独受众画像的数据分析少有人提及,尚有可挖的地方。今天借此机会,和大家分享一种受众数据分析的思路。

需要强调的是,接下来的广告数据分析有一个最基本的前提:假设媒体提供的数据和甲方监测的数据都是真实准确的。下面我会以一个真实的案例和数据(今日头条,家装类)向大家介绍,如何用朴素贝叶斯的算法,对今日头条的受众画像进行数据挖掘和分析,从而实现精准定向下的转化率预测。

1.朴素贝叶斯的原理

每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。比如,我知道发生转化的用户中,女性的比例是36%,那么当一个女性用户看到我的广告时,她有多大的可能性发生转化。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值