How Virtual Table works in C++

原文:http://www.learncpp.com/cpp-tutorial/125-the-virtual-table/

To implement virtual functions, C++ uses a special form of late binding known as the virtual table. The virtual tableis a lookup table of functions used to resolve function calls in a dynamic/late binding manner. The virtual table sometimes goes by other names, such as “vtable”, “virtual function table”, “virtual method table”, or “dispatch table”.

Because knowing how the virtual table works is not necessary to use virtual functions, this section can be considered optional reading.

The virtual table is actually quite simple, though it’s a little complex to describe in words. First, every class that uses virtual functions (or is derived from a class that uses virtual functions) is given it’s own virtual table. This table is simply a static array that the compiler sets up at compile time. A virtual table contains one entry for each virtual function that can be called by objects of the class. Each entry in this table is simply a function pointer that points to the most-derived function accessible by that class.

Second, the compiler also adds a hidden pointer to the base class, which we will call *__vptr. *__vptr is set (automatically) when a class instance is created so that it points to the virtual table for that class. Unlike the *this pointer, which is actually a function parameter used by the compiler to resolve self-references, *__vptr is a real pointer. Consequently, it makes each class object allocated bigger by the size of one pointer. It also means that *__vptr is inherited by derived classes, which is important.

By now, you’re probably confused as to how these things all fit together, so let’s take a look at a simple example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Base
{
public:
    virtual void function1() {};
    virtual void function2() {};
};
 
class D1: public Base
{
public:
    virtual void function1() {};
};
 
class D2: public Base
{
public:
    virtual void function2() {};
};

Because there are 3 classes here, the compiler will set up 3 virtual tables: one for Base, one for D1, and one for D2.

The compiler also adds a hidden pointer to the most base class that uses virtual functions. Although the compiler does this automatically, we’ll put it in the next example just to show where it’s added:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Base
{
public:
    FunctionPointer *__vptr;
    virtual void function1() {};
    virtual void function2() {};
};
 
class D1: public Base
{
public:
    virtual void function1() {};
};
 
class D2: public Base
{
public:
    virtual void function2() {};
};

When a class object is created, *__vptr is set to point to the virtual table for that class. For example, when a object of type Base is created, *__vptr is set to point to the virtual table for Base. When objects of type D1 or D2 are constructed, *__vptr is set to point to the virtual table for D1 or D2 respectively.

Now, let’s talk about how these virtual tables are filled out. Because there are only two virtual functions here, each virtual table will have two entries (one for function1(), and one for function2()). Remember that when these virtual tables are filled out, each entry is filled out with the most-derived function an object of that class type can call.

Base’s virtual table is simple. An object of type Base can only access the members of Base. Base has no access to D1 or D2 functions. Consequently, the entry for function1 points to Base::function1(), and the entry for function2 points to Base::function2().

D1′s virtual table is slightly more complex. An object of type D1 can access members of both D1 and Base. However, D1 has overridden function1(), making D1::function1() more derived than Base::function1(). Consequently, the entry for function1 points to D1::function1(). D1 hasn’t overridden function2(), so the entry for function2 will point to Base::function2().

D2′s virtual table is similar to D1, except the entry for function1 points to Base::function1(), and the entry for function2 points to D2::function2().

Here’s a picture of this graphically:

Although this diagram is kind of crazy looking, it’s really quite simple: the *__vptr in each class points to the virtual table for that class. The entries in the virtual table point to the most-derived version of the function objects of that class are allowed to call.

So consider what happens when we create an object of type D1:

1
2
3
4
int main()
{
    D1 cClass;
}

Because cClass is a D1 object, cClass has it’s *__vptr set to the D1 virtual table.

Now, let’s set a base pointer to D1:

1
2
3
4
5
int main()
{
    D1 cClass;
    Base *pClass = &cClass;
}

Note that because pClass is a base pointer, it only points to the Base portion of cClass. However, also note that *__vptr is in the Base portion of the class, so pClass has access to this pointer. Finally, note that pClass->__vptr points to the D1 virtual table! Consequently, even though pClass is of type Base, it still has access to D1′s virtual table.

So what happens when we try to call pClass->function1()?

1
2
3
4
5
6
int main()
{
    D1 cClass;
    Base *pClass = &cClass;
    pClass->function1();
}

First, the program recognizes that function1() is a virtual function. Second, uses pClass->__vptr to get to D1′s virtual table. Third, it looks up which version of function1() to call in D1′s virtual table. This has been set to D1::function1(). Therefore, pClass->function1() resolves to D1::function1()!

Now, you might be saying, “But what if Base really pointed to a Base object instead of a D1 object. Would it still call D1::function1()?”. The answer is no.

1
2
3
4
5
6
int main()
{
    Base cClass;
    Base *pClass = &cClass;
    pClass->function1();
}

In this case, when cClass is created, __vptr points to Base’s virtual table, not D1′s virtual table. Consequently, pClass->__vptr will also be pointing to Base’s virtual table. Base’s virtual table entry for function1() points to Base::function1(). Thus, pClass->function1() resolves to Base::function1(), which is the most-derived version of function1() that a Base object should be able to call.

By using these tables, the compiler and program are able to ensure function calls resolve to the appropriate virtual function, even if you’re only using a pointer or reference to a base class!

Calling a virtual function is slower than calling a non-virtual function for a couple of reasons: First, we have to use the *__vptr to get to the appropriate virtual table. Second, we have to index the virtual table to find the correct function to call. Only then can we call the function. As a result, we have to do 3 operations to find the function to call, as opposed to 2 operations for a normal indirect function call, or one operation for a direct function call. However, with modern computers, this added time is usually fairly insignificant.



JFM7VX690T型SRAM型现场可编程门阵列技术手册主要介绍的是上海复旦微电子集团股份有限公司(简称复旦微电子)生产的高性能FPGA产品JFM7VX690T。该产品属于JFM7系列,具有现场可编程特性,集成了功能强大且可以灵活配置组合的可编程资源,适用于实现多种功能,如输入输出接口、通用数字逻辑、存储器、数字信号处理和时钟管理等。JFM7VX690T型FPGA适用于复杂、高速的数字逻辑电路,广泛应用于通讯、信息处理、工业控制、数据中心、仪表测量、医疗仪器、人工智能、自动驾驶等领域。 产品特点包括: 1. 可配置逻辑资源(CLB),使用LUT6结构。 2. 包含CLB模块,可用于实现常规数字逻辑和分布式RAM。 3. 含有I/O、BlockRAM、DSP、MMCM、GTH等可编程模块。 4. 提供不同的封装规格和工作温度范围的产品,便于满足不同的使用环境。 JFM7VX690T产品系列中,有多种型号可供选择。例如: - JFM7VX690T80采用FCBGA1927封装,尺寸为45x45mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T80-AS同样采用FCBGA1927封装,但工作温度范围更广,为-55°C到+125°C,同样使用锡银焊球。 - JFM7VX690T80-N采用FCBGA1927封装和铅锡焊球,工作温度范围与JFM7VX690T80-AS相同。 - JFM7VX690T36的封装规格为FCBGA1761,尺寸为42.5x42.5mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T36-AS使用锡银焊球,工作温度范围为-55°C到+125°C。 - JFM7VX690T36-N使用铅锡焊球,工作温度范围与JFM7VX690T36-AS相同。 技术手册中还包含了一系列详细的技术参数,包括极限参数、推荐工作条件、电特性参数、ESD等级、MSL等级、重量等。在产品参数章节中,还特别强调了封装类型,包括外形图和尺寸、引出端定义等。引出端定义是指对FPGA芯片上的各个引脚的功能和接线规则进行说明,这对于FPGA的正确应用和电路设计至关重要。 应用指南章节涉及了FPGA在不同应用场景下的推荐使用方法。其中差异说明部分可能涉及产品之间的性能差异;关键性能对比可能包括功耗与速度对比、上电浪涌电流测试情况说明、GTH Channel Loss性能差异说明、GTH电源性能差异说明等。此外,手册可能还提供了其他推荐应用方案,例如不使用的BANK接法推荐、CCLK信号PCB布线推荐、JTAG级联PCB布线推荐、系统工作的复位方案推荐等,这些内容对于提高系统性能和稳定性有着重要作用。 焊接及注意事项章节则针对产品的焊接过程提供了指导,强调焊接过程中的注意事项,以确保产品在组装过程中的稳定性和可靠性。手册还明确指出,未经复旦微电子的许可,不得翻印或者复制全部或部分本资料的内容,且不承担采购方选择与使用本文描述的产品和服务的责任。 上海复旦微电子集团股份有限公司拥有相关的商标和知识产权。该公司在中国发布的技术手册,版权为上海复旦微电子集团股份有限公司所有,未经许可不得进行复制或传播。 技术手册提供了上海复旦微电子集团股份有限公司销售及服务网点的信息,方便用户在需要时能够联系到相应的服务机构,获取最新信息和必要的支持。同时,用户可以访问复旦微电子的官方网站(***以获取更多产品信息和公司动态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值