Debugging C++ Release Projects - Finding the Lost Object Information

本文介绍了在C++项目发布模式下,由于优化导致对象信息丢失时,如何使用Visual Studio工具找到正确地址的方法。通过分析调用堆栈、寄存器值和反汇编窗口,可以定位到对象的实际内存地址,从而解决因对象信息缺失导致的异常问题。

Debugging C++ Release Projects - Finding the Lost Object Information

By  Yochai Timmer15 Feb 2014
 

Introduction

When compiling a C++ project in release with optimizations, the compiler sometimes doesn't show the right object information.

The local variables are usually the first to go, and many times the this object's information are lost to the debugger.

The reason is that the compiler uses the available hardware registers to hold the information, and uses optimizations to avoid allocation of local variables.

In this tip, I'll show how to use Visual Studio's tools to see where the information is held.

Using the Code

I'll give a simple example of some code that throws an exception,

I'll create a simple class and a situation where one of the member's value will cause a division by zero exception.

I'll add an extra method just so the debugger will stop at the right line (due to optimizations, the debugger may not stop at the right line, because the actual code stack doesn't represent where you are in the code - just the return address. This issue may be explained in a future post.).

The extra method is important for this scenario, just so we can imitate the scenario I'm talking about.

  class SomeClass
    {
    public:
        int a,b;
        void MyMethod()
        {
            int i = 0;
            int j = i;
            DoStuff();
            a = this->a/this->b;
            DoStuff();
            DoStuff();
        }
 
        void DoStuff()
        {
            int i = 10;
            int j = 5;
            int k = 4;
            for ( ;i * j + k < 40000; i++)
            {
                int fs = 34;
            }
            printf("%d %d %d %d %d", i , j , k , 10,8);
        }
    };
int main(int argc, void* argv[])
{
    SomeClass a;
    a.a = 5;
    a.b = 0;
 
    a.MyMethod();
    return 0;
}

Now, if you run this little program in release mode, you'll get an exception complaining about a division by zero. This is because the member b is set to 0.

The debugger will conveniently stop at the right line, but unfortunately all the local variables and the this variable will be corrupted.

The information is obviously somewhere, but the debugger just doesn't seem to load the right information. If you look closely, then you can see that the this value is 01 which indicates that it's just reading the object's information from the wrong place/address.

So, how can we find the object's right address ?

Using the Call Stack

The first method, which is the easiest, is to go up the call stack and hope that at some level the debugger sees the right address. This is by far easier than the next method...

If we look at the call stack, we can see that the debugger correctly resolved that we are in the method MyMethod of the SomeClass class:

So, if we just go to the previous function in the stack (main), the debugger might still hold the right address to the object (because the object was known and used there). This will work as long as the compiler didn't decide to re-use the registers that held the object's address.

So, if we double click the line just below our current position, the debugger will jump to the code where the current method was called:

Here, we can clearly see that b equals 0, and we are dividing by b, so mystery solved - that's why we get an exception!

But... In deeper nested call stacks, with more complicated code, this doesn't always work, and the debugger may use the information throughout the whole call stack hierarchy.

Registry Values and Disassembly

The key is to understand that the CPU holds its information in its registers. Although the actual information may be stored in memory (stack or heap), the CPU itself only uses the registers.

The compiler adds assembly code that copies the relevant information from the memory to the registers for the CPU to actually do the calculations.

Knowing that, we can assume that most of the locally used variables and this address will be held in the registers (unless there is no farther use for them, in which case the register may be re-used to hold other information).

To know how exactly the variables are mapped to registers, we can use the Disassembly window and Registerswindow.

I'll not really go into assembly code, I'll just look at the register names.

Let's look at the Dissasembly window of our problematic code. We want to find a place where the code calls a local variable of the current object we want, the mapped assembly code can point out the register it's using:

We can see that when we call the local members, the matching assembly code calls a register called rdi.

This register probably holds the address of our object (object members are accessed by an offset from the object's starting point (address) in memory).

We will now want to see what value the register holds. We hope that it's an address (a large number). If we open the Registers window, we can see its value:

We can see that rdi holds the value 000000000025F950 it's a hexadecimal value that is pretty big, and this is what a memory address usually looks like. (Lower values usually represent counters or other local function members.)

Of course, this means absolutely nothing to me, or almost anyone else, so let's let the debugger help us figure it out.

We can now open the Watch window. It's a useful window which among other things allows you to enter specific addresses and show their value.

We'll cast the address to a pointer of our object's type, and add a 0x prefix to the number so the debugger knows it's a hexadecimal value:

(SomeClass*)(0x000000000025F950)  

The debugger will now show us the object like we're used to seeing it:

Points of Interest

  1. Call Stack: Debug -> Windows -> Call Stack (alt+7)
  2. Locals: Debug -> Windows -> Locals (alt+4)
  3. Disassembly window: Debug -> Windows -> Disassembly (alt+8)
  4. Registers window: Debug -> Windows -> Registers (alt+5)
  5. Watch window: Debug -> Windows -> Watch -> Watch 1 (ctrl + alt + w, 1)

History

  • 15th February, 2014: Initial version

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

<think>我们面对的是一个名为objdumparm.exe的工具,它类似于GNU的objdump工具,用于显示目标文件的信息。 用户提供的输出是它的帮助信息,列出了各种选项及其作用。我们需要解读每个选项的作用。 根据帮助信息,逐一解释: 1. -a, --archive-headers: 显示归档文件(如静态库.a文件)的头部信息。 2. -f, --file-headers: 显示整个文件的头部信息(例如,ELF文件头)。 3. -p, --private-headers: 显示对象格式特定的文件头内容(这通常包括一些特定的段或节的信息)。 4. -h, --[section-]headers: 显示节头部(section headers)的内容。 5. -x, --all-headers: 显示所有头部的信息(相当于同时使用-a、-f、-h等)。 6. -d, --disassemble: 反汇编可执行节(通常是代码节)的内容。 7. -D, --disassemble-all: 反汇编所有节的内容(不仅仅是可执行节)。 8. -S, --source: 在反汇编中混合源代码(需要目标文件包含调试信息)。 9. -s, --full-contents: 显示所有请求节的完整内容(以十六进制和ASCII形式)。 10. -g, --debugging: 显示目标文件中的调试信息。 11. -e, --debugging-tags: 以ctags风格显示调试信息(用于生成标签索引)。 12. -G, --stabs: 显示文件中的STABS调试信息(原始形式)。 13. -t, --syms: 显示符号表内容(包括函数和全局变量等)。 14. -T, --dynamic-syms: 显示动态符号表(用于共享库)。 15. -r, --reloc: 显示文件中的重定位条目(静态重定位)。 16. -R, --dynamic-reloc: 显示动态重定位条目(用于动态链接)。 17. -v, --version: 显示objdumparm.exe的版本号。 18. -i, --info: 列出支持的目标文件格式和架构。 19. -H, --help: 显示帮助信息(即用户看到的这个输出)。 注意:这个工具的名字中有"arm",可能是专门针对ARM架构的objdump变种,但使用方式类似。 接下来,按照要求,我们需要在最后提出3-5个相关问题。 </think> 以下是`objdumparm.exe`工具各选项的详细解读(基于ARM架构的二进制分析工具): ### 核心选项解析: 1. **基础头信息** - `-a/--archive-headers`:显示归档文件头(如静态库.a文件) - `-f/--file-headers`:显示**整体文件头**(如ELF文件格式的魔数、架构等) - `-p/--private-headers`:显示**对象格式特有头**(如PE/ELF的扩展头信息) 2. **节区(Section)操作** - `-h/--[section-]headers`:列出所有**节区头部表**(地址/大小/权限) - `-x/--all-headers`:**完整头信息**(包含`-a`,`-f`,`-p`,`-h`总和) - `-s/--full-contents`:**导出节区原始内容**(16进制+ASCII格式) 3. **反汇编与分析** - `-d/--disassemble`:**反汇编代码节**(仅.text等可执行节) - `-D/--disassemble-all`:**反汇编所有节**(包括数据节) - `-S/--source`:**混合源码与反汇编**(需编译时带`-g`调试信息) 4. **符号与调试** - `-g/--debugging`:显示**标准调试信息**(DWARF格式) - `-e/--debugging-tags`:生成**ctags风格索引**(用于代码跳转) - `-G/--stabs`:显示原始**STABS调试信息**(旧式调试格式) - `-t/--syms`:列出**静态符号表**(函数/全局变量) - `-T/--dynamic-syms`:列出**动态符号表**(共享库导入导出) 5. **重定位信息** - `-r/--reloc`:显示**静态重定位条目**(链接时地址修正) - `-R/--dynamic-reloc`:显示**动态重定位条目**(运行时地址修正) 6. **辅助功能** - `-v/--version`:显示工具版本 - `-i/--info`:列出**支持的目标格式与架构** - `-H/--help`:显示此帮助菜单 ### 典型使用场景: ```bash # 查看ARM可执行文件的代码反汇编 objdumparm.exe -d a.out # 分析动态库的符号和重定位 objdumparm.exe -T -R libfoo.so # 导出带源码的混合反汇编(需调试版) objdumparm.exe -S -d debug_app ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值