尚硅谷大数据技术之电商用户行为分析
第1章 项目整体介绍
1.1 电商的用户行为
电商平台中的用户行为频繁且较复杂,系统上线运行一段时间后,可以收集到大量的用户行为数据,进而利用大数据技术进行深入挖掘和分析,得到感兴趣的商业指标并增强对风险的控制。
电商用户行为数据多样,整体可以分为用户行为习惯数据和业务行为数据两大类。用户的行为习惯数据包括了用户的登录方式、上线的时间点及时长、点击和浏览页面、页面停留时间以及页面跳转等等,我们可以从中进行流量统计和热门商品的统计,也可以深入挖掘用户的特征;这些数据往往可以从web服务器日志中直接读取到。而业务行为数据就是用户在电商平台中针对每个业务(通常是某个具体商品)所作的操作,我们一般会在业务系统中相应的位置埋点,然后收集日志进行分析。业务行为数据又可以简单分为两类:一类是能够明显地表现出用户兴趣的行为,比如对商品的收藏、喜欢、评分和评价,我们可以从中对数据进行深入分析,得到用户画像,进而对用户给出个性化的推荐商品列表,这个过程往往会用到机器学习相关的算法;另一类则是常规的业务操作,但需要着重关注一些异常状况以做好风控,比如登录和订单支付。

1.2 项目主要模块
基于对电商用户行为数据的基本分类,我们可以发现主要有以下三个分析方向:
- 热门统计
利用用户的点击浏览行为,进行流量统计、近期热门商品统计等。
- 偏好统计
利用用户的偏好行为,比如收藏、喜欢、评分等,进行用户画像分析,给出个性化的商品推荐列表。
- 风险控制
利用用户的常规业务行为,比如登录、下单、支付等,分析数据,对异常情况进行报警提示。
本项目限于数据,我们只实现热门统计和风险控制中的部分内容,将包括以下五大模块:实时热门商品统计、实时流量统计、市场营销商业指标统计、恶意登录监控和订单支付失效监控,其中细分为以下9个具体指标:
由于对实时性要求较高,我们会用flink作为数据处理的框架。在项目中,我们将综合运用flink的各种API,基于EventTime去处理基本的业务需求,并且灵活地使用底层的processFunction,基于状态编程和CEP去处理更加复杂的情形。
1.3 数据源解析
我们准备了一份淘宝用户行为数据集,保存为csv文件。本数据集包含了淘宝上某一天随机一百万用户的所有行为(包括点击、购买、收藏、喜欢)。数据集的每一行表示一条用户行为,由用户ID、商品ID、商品类目ID、行为类型和时间戳组成,并以逗号分隔。关于数据集中每一列的详细描述如下:
字段名 |
数据类型 |
说明 |
userId |
Long |
加密后的用户ID |
itemId |
Long |
加密后的商品ID |
categoryId |
Int |
加密后的商品所属类别ID |
behavior |
String |
用户行为类型,包括(‘pv’, ‘’buy, ‘cart’, ‘fav’) |
timestamp |
Long |
行为发生的时间戳,单位秒 |
另外,我们还可以拿到web服务器的日志数据,这里以apache服务器的一份log为例,每一行日志记录了访问者的IP、userId、访问时间、访问方法以及访问的url,具体描述如下:
字段名 |
数据类型 |
说明 |
ip |
String |
访问的 IP |
userId |
Long |
访问的 user ID |
eventTime |
Long |
访问时间 |
method |
String |
访问方法 GET/POST/PUT/DELETE |
url |
String |
访问的 url |
由于行为数据有限,在实时热门商品统计模块中可以使用UserBehavior数据集,而对于恶意登录监控和订单支付失效监控,我们只以示例数据来做演示。
第2章 实时热门商品统计
首先要实现的是实时热门商品统计,我们将会基于UserBehavior数据集来进行分析。
项目主体用Scala编写,采用IDEA作为开发环境进行项目编写,采用maven作为项目构建和管理工具。首先我们需要搭建项目框架。
2.1 创建Maven项目
2.1.1 项目框架搭建
打开IDEA,创建一个maven项目,命名为UserBehaviorAnalysis。由于包含了多个模块,我们可以以UserBehaviorAnalysis作为父项目,并在其下建一个名为HotItemsAnalysis的子项目,用于实时统计热门top N商品。
在UserBehaviorAnalysis下新建一个 maven module作为子项目,命名为HotItemsAnalysis。
父项目只是为了规范化项目结构,方便依赖管理,本身是不需要代码实现的,所以UserBehaviorAnalysis下的src文件夹可以删掉。
2.1.2 声明项目中工具的版本信息
我们整个项目需要的工具的不同版本可能会对程序运行造成影响,所以应该在最外层的UserBehaviorAnalysis中声明所有子模块共用的版本信息。
在pom.xml中加入以下配置:
UserBehaviorAnalysis/pom.xml
<properties> <flink.version>1.10.0</flink.version> <scala.binary.version>2.11</scala.binary.version> <kafka.version>2.2.0</kafka.version></properties> |
2.1.3 添加项目依赖
对于整个项目而言,所有模块都会用到flink相关的组件,所以我们在UserBehaviorAnalysis中引入公有依赖:
UserBehaviorAnalysis/pom.xml
<dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-scala_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_${scala.binary.version}</artifactId> <version>${kafka.version}</version></dependency><dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_${scala.binary.version}</artifactId> <version>${flink.version}</version></dependency> </dependencies> |
同样,对于maven项目的构建,可以引入公有的插件:
<build> <plugins> <!-- 该插件用于将Scala代码编译成class文件 --> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.4.6</version> <executions> <execution> <!-- 声明绑定到maven的compile阶段 --> <goals> <goal>compile</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-assembly-plugin</artifactId> <version>3.0.0</version> <configuration> <descriptorRefs> <descriptorRef> jar-with-dependencies </descriptorRef> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins></build> |
在HotItemsAnalysis子模块中,我们并没有引入更多的依赖,所以不需要改动pom文件。
2.1.4 数据准备
在src/main/目录下,可以看到已有的默认源文件目录是java,我们可以将其改名为scala。将数据文件UserBehavior.csv复制到资源文件目录src/main/resources下,我们将从这里读取数据。
至此,我们的准备工作都已完成,接下来可以写代码了。
2.2 模块代码实现
我们将实现一个“实时热门商品”的需求,可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5分钟输出最近一小时内点击量最多的前N个商品。将这个需求进行分解我们大概要做这么几件事情:
- 抽取出业务时间戳,告诉Flink框架基于业务时间做窗口
- 过滤出点击行为数据
- 按一小时的窗口大小,每5分钟统计一次,做滑动窗口聚合(Sliding Window)
- 按每个窗口聚合,输出每个窗口中点击量前N名的商品
2.2.1 程序主体
在src/main/scala下创建HotItems.scala文件,新建一个单例对象。定义样例类UserBehavior和ItemViewCount,在main函数中创建StreamExecutionEnvironment 并做配置,然后从UserBehavior.csv文件中读取数据,并包装成UserBehavior类型。代码如下:
HotItemsAnalysis/src/main/scala/HotItems.scala
case class UserBehavior(userId: Long, itemId: Long, categoryId: Int, behavior: String, timestamp: Long)case class ItemViewCount(itemId: Long, windowEnd: Long, count: Long)
object HotItems { def main(args: Array[String]): Unit = {
// 创建一个 StreamExecutionEnvironment val env = StreamExecutionEnvironment.getExecutionEnvironment // 设定Time类型为EventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) // 为了打印到控制台的结果不乱序,我们配置全局的并发为1,这里改变并发对结果正确性没有影响
env.setParallelism(1) val stream = env
// 以window下为例,需替换成自己的路径 .readTextFile("YOUR_PATH\\resources\\UserBehavior.csv") .map(line => { val linearray = line.split(",") UserBehavior(linearray(0).toLong, linearray(1).toLong, linearray(2).toInt, linearray(3), linearray(4).toLong) })
// 指定时间戳和watermark
.assignAscendingTimestamps(_.timestamp * 1000)
env.execute("Hot Items Job") }
这里注意,我们需要统计业务时间上的每小时的点击量,所以要基于EventTime来处理。那么如果让Flink按照我们想要的业务时间来处理呢?这里主要有两件事情要做。
第一件是告诉Flink我们现在按照EventTime模式进行处理,Flink默认使用ProcessingTime处理,所以我们要显式设置如下:
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
第二件事情是指定如何获得业务时间,以及生成Watermark。Watermark是用来追踪业务事件的概念,可以理解成EventTime世界中的时钟,用来指示当前处理到什么时刻的数据了。由于我们的数据源的数据已经经过整理,没有乱序,即事件的时间戳是单调递增的,所以可以将每条数据的业务时间就当做Watermark。这里我们用 assignAscendingTimestamps来实现时间戳的抽取和Watermark的生成。
注:真实业务场景一般都是乱序的,所以一般不用assignAscendingTimestamps,而是使用BoundedOutOfOrdernessTimestampExtractor。
.assignAscendingTimestamps(_.timestamp * 1000)
这样我们就得到了一个带有时间标记的数据流了,后面就能做一些窗口的操作。
2.2.2 过滤出点击事件
在开始窗口操作之前,先回顾下需求“每隔5分钟输出过去一小时内点击量最多的前N个商品”。由于原始数据中存在点击、购买、收藏、喜欢各种行为的数据,但是我们只需要统计点击量,所以先使用filter将点击行为数据过滤出来。
.filter(_.behavior == "pv")
2.2.3 设置滑动窗口,统计点击量
由于要每隔5分钟统计一次最近一小时每个商品的点击量,所以窗口大小是一小时,每隔5分钟滑动一次。即分别要统计[09:00, 10:00), [09:05, 10:05), [09:10, 10:10)…等窗口的商品点击量。是一个常见的滑动窗口需求(Sliding Window)。
.keyBy("itemId")
.timeWindow(Time.minutes(60), Time.minutes(5))
.aggregate(new CountAgg(), new WindowResultFunction());
我们使用.keyBy("itemId")对商品进行分组,使用.timeWindow(Time size, Time slide)对每个商品做滑动窗口(1小时窗口,5分钟滑动一次)。然后我们使用 .aggregate(AggregateFunction af, WindowFunction wf) 做增量的聚合操作,它能使用AggregateFunction提前聚合掉数据,减少state的存储压力。较之 .apply(WindowFunction wf) 会将窗口中的数据都存储下来,最后一起计算要高效地多。这里的CountAgg实现了AggregateFunction接口,功能是统计窗口中的条数,即遇到一条数据就加一。
// COUNT统计的聚合函数实现,每出现一条记录就加一class CountAgg extends AggregateFunction[UserBehavior, Long, Long] { override def createAccumulator(): Long = 0L override def add(userBehavior: UserBehavior, acc: Long): Long = acc + 1 override def getResult(acc: Long): Long = acc override def merge(acc1: Long, acc2: Long): Long = acc1 + acc2}
聚合操作.aggregate(AggregateFunction af, WindowFunction wf)的第二个参数WindowFunction将每个key每个窗口聚合后的结果带上其他信息进行输出。我们这里实现的WindowResultFunction将<主键商品ID,窗口,点击量>封装成了ItemViewCount进行输出。
// 商品点击量(窗口操作的输出类型)
case class ItemViewCount(itemId: Long, windowEnd: Long, count: Long)
代码如下:
// 用于输出窗口的结果class WindowResultFunction extends WindowFunction[Long, ItemViewCount, Tuple, TimeWindow] { override def apply(key: Tuple, window: TimeWindow, aggregateResult: Iterable[Long], collector: Collector[ItemViewCount]) : Unit = { val itemId: Long = key.asInstanceOf[Tuple1[Long]].f0 val count = aggregateResult.iterator.next collector.collect(ItemViewCount(itemId, window.getEnd, count)) }}
现在我们就得到了每个商品在每个窗口的点击量的数据流。
2.2.4 计算最热门Top N商品
为了统计每个窗口下最热门的商品,我们需要再次按窗口进行分组,这里根据ItemViewCount中的windowEnd进行keyBy()操作。然后使用ProcessFunction实现一个自定义的TopN函数TopNHotItems来计算点击量排名前3名的商品,并将排名结果格式化成字符串,便于后续输出。
.keyBy("windowEnd")
.process(new TopNHotItems(3)); // 求点击量前3名的商品
ProcessFunction是Flink提供的一个low-level API,用于实现更高级的功能。它主要提供了定时器timer的功能(支持EventTime或ProcessingTime)。本案例中我们将利用timer来判断何时收齐了某个window下所有商品的点击量数据。由于Watermark的进度是全局的,在processElement方法中,每当收到一条数据ItemViewCount,我们就注册一个windowEnd+1的定时器(Flink框架会自动忽略同一时间的重复注册)。windowEnd+1的定时器被触发时,意味着收到了windowEnd+1的Watermark,即收齐了该windowEnd下的所有商品窗口统计值。我们在onTimer()中处理将收集的所有商品及点击量进行排序,选出TopN,并将排名信息格式化成字符串后进行输出。
这里我们还使用了ListState<ItemViewCount>来存储收到的每条ItemViewCount消息,保证在发生故障时,状态数据的不丢失和一致性。ListState是Flink提供的类似Java List接口的State API,它集成了框架的checkpoint机制,自动做到了exactly-once的语义保证。
// 求某个窗口中前 N 名的热门点击商品,key 为窗口时间戳,输出为 TopN 的结果字符串 class TopNHotItems(topSize: Int) extends KeyedProcessFunction[Tuple, ItemViewCount, String] { private var itemState : ListState[ItemViewCount] = _ override def open(parameters: Configuration): Unit = { super.open(parameters) // 命名状态变量的名字和状态变量的类型 val itemsStateDesc = new ListStateDescriptor[ItemViewCount]("itemState-state", classOf[ItemViewCount]) // 定义状态变量 itemState = getRuntimeContext.getListState(itemsStateDesc) }
&