BZOJ5323:[JXOI2018]游戏

本文探讨了埃氏筛法在筛选质数中的高效应用,并结合组合数学原理,解决了一个特定的算法问题。通过枚举和组合的方式,详细介绍了如何计算特定范围内数字的选择方案数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门
不难发现,所有不能被其他数筛掉的数是一定要选的,只有选了这些数字才能结束
假设有 m m m 个,枚举结束时间 x x x,答案就是 ∑ ( x − 1 m − 1 ) m ! ( n − m ) ! x \sum \binom{x-1}{m-1}m!(n-m)!x (m1x1)m!(nm)!x
埃氏筛法即可求出 m m m

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn(1e7 + 5);
const int mod(1e9 + 7);

inline void Inc(int &x, const int y) {
    x = x + y >= mod ? x + y - mod : x + y;
}

int l, r, n, m, ans, fac[maxn], inv[maxn];
bitset <maxn> vis;

int main() {
	int i, j, k;
	scanf("%d%d", &l, &r), n = r - l + 1;
	if (l == 1) {
		for (k = i = 1; i < n; ++i) k = (ll)k * i % mod;
		ans = (ll)n * (n + 1) / 2 % mod * k % mod;
		return printf("%d\n", ans), 0;
	}
	for (i = l; i <= r; ++i)
		if (!vis[i]) for (++m, j = i; j <= r; j += i) vis[j] = 1;
	inv[0] = inv[1] = fac[0] = fac[1] = 1;
	for (i = 2; i <= n; ++i) inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
	for (i = 2; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % mod, inv[i] = (ll)inv[i] * inv[i - 1] % mod;
	for (i = m; i <= n; ++i) Inc(ans, (ll)fac[i] * inv[i - m] % mod);
	ans = (ll)ans * m % mod * fac[n - m] % mod, printf("%d\n", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值