Spark-storage

本文深入探讨了Apache Spark中的存储机制,包括RDD、StorageLevel、BlockManager等关键概念,详细解析了如何在不同场景下选择合适的存储策略,以及如何在堆内存、磁盘和BigMemory间进行高效的数据存储与管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark-storage

@(spark)[storage]

java.nio

java的new io库,作为预备知识,需要先看一下
推荐入门, 中文翻译版

RDDInfo

utils类,描述RDD的信息

StorageLevel

/**                                                                                                                                                                     
 * :: DeveloperApi ::                                                                                                                                                   
 * Flags for controlling the storage of an RDD. Each StorageLevel records whether to use memory,                                                                        
 * or Tachyon, whether to drop the RDD to disk if it falls out of memory or Tachyon , whether to                                                                        
 * keep the data in memory in a serialized format, and whether to replicate the RDD partitions on                                                                       
 * multiple nodes.                                                                                                                                                      
 *                                                                                                                                                                      
 * The [[org.apache.spark.storage.StorageLevel$]] singleton object contains some static constants                                                                       
 * for commonly useful storage levels. To create your own storage level object, use the                                                                                 
 * factory method of the singleton object (`StorageLevel(...)`).                                                                                                        
 */                                                                                                                                                                     
@DeveloperApi                                                                                                                                                           
class StorageLevel private(                                                                                                                                             
    private var _useDisk: Boolean,                                                                                                                                      
    private var _useMemory: Boolean,                                                                                                                                    
    private var _useOffHeap: Boolean,                                                                                                                                   
    private var _deserialized: Boolean,                                                                                                                                 
    private var _replication: Int = 1)    

堆Heap是内存中动态分配对象居住的地方。如果使用new一个对象,它就被分配在堆内存上。这是相对于Stack,如果你有一个局部变量则它是位于Stack栈内存空间。

BigMemory是用来避免GC对堆的开销,从几MB或GB大。 BigMemory通过直接的ByteBuffers使用JVM进程的内存地址空间,不像其他原生Java对象接受GC管束。

EHCache(Terrcotta BigMemory)的 off-heap将你的对象从堆中脱离出来序列化,然后存储在一大块内存中,这就像它存储到磁盘上上一样,但它仍然在RAM中。对象在这种状态下不能直接使用,它们必须首先反序列化。也不受垃圾收集。序列化和反序列化会影响性能。(FST-serialization还是很快)。

实际上是用的是如下的storageLevel

  val NONE = new StorageLevel(false, false, false, false)                                                                                                               
  val DISK_ONLY = new StorageLevel(true, false, false, false)                                                                                                           
  val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)                                                                                                      
  val MEMORY_ONLY = new StorageLevel(false, true, false, true)                                                                                                          
  val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)                                                                                                     
  val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)                                                                                                     
  val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)                                                                                                
  val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)                                                                                                       
  val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)                                                                                                  
  val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)                                                                                                  
  val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)                                                                                             
  val OFF_HEAP = new StorageLevel(false, false, true, false)   

BlockManagerId

/**                                                                                                                                                                     
 * :: DeveloperApi ::                                                                                                                                                   
 * This class represent an unique identifier for a BlockManager.                                                                                                        
 *                                                                                                                                                                      
 * The first 2 constructors of this class is made private to ensure that BlockManagerId objects                                                                         
 * can be created only using the apply method in the companion object. This allows de-duplication                                                                       
 * of ID objects. Also, constructor parameters are private to ensure that parameters cannot be                                                                          
 * modified from outside this class.                                                                                                                                    
 */                                                                                                                                                                     
@DeveloperApi                                                                                                                                                           
class BlockManagerId private ( 

BlockId

/**                                                                                                                                                                     
 * :: DeveloperApi ::                                                                                                                                                   
 * Identifies a particular Block of data, usually associated with a single file.                                                                                        
 * A Block can be uniquely identified by its filename, but each type of Block has a different                                                                           
 * set of keys which produce its unique name.                                                                                                                           
 *                                                                                                                                                                      
 * If your BlockId should be serializable, be sure to add it to the BlockId.apply() method.                                                                             
 */  

 实际上是用的Block类型
  /** Converts a BlockId "name" String back into a BlockId. */                                                                                                          
  def apply(id: String) = id match {                                                                                                                                    
    case RDD(rddId, splitIndex) =>                                                                                                                                      
      RDDBlockId(rddId.toInt, splitIndex.toInt)                                                                                                                         
    case SHUFFLE(shuffleId, mapId, reduceId) =>                                                                                                                         
      ShuffleBlockId(shuffleId.toInt, mapId.toInt, reduceId.toInt)                                                                                                      
    case SHUFFLE_DATA(shuffleId, mapId, reduceId) =>                                                                                                                    
      ShuffleDataBlockId(shuffleId.toInt, mapId.toInt, reduceId.toInt)                                                                                                  
    case SHUFFLE_INDEX(shuffleId, mapId, reduceId) =>                                                                                                                   
      ShuffleIndexBlockId(shuffleId.toInt, mapId.toInt, reduceId.toInt)                                                                                                 
    case BROADCAST(broadcastId, field) =>                                                                                                                               
      BroadcastBlockId(broadcastId.toLong, field.stripPrefix("_"))                                                                                                      
    case TASKRESULT(taskId) =>                                                                                                                                          
      TaskResultBlockId(taskId.toLong)                                                                                                                                  
    case STREAM(streamId, uniqueId) =>                                                                                                                                  
      StreamBlockId(streamId.toInt, uniqueId.toLong)                                                                                                                    
    case TEST(value) =>                                                                                                                                                 
      TestBlockId(value)                                                                                                                                                
    case _ =>                                                                                                                                                           
      throw new IllegalStateException("Unrecognized BlockId: " + id)                                                                                                    
  }      

PutResult

/**                                                                                                                                                                     
 * Result of adding a block into a BlockStore. This case class contains a few things:                                                                                   
 *   (1) The estimated size of the put,                                                                                                                                 
 *   (2) The values put if the caller asked for them to be returned (e.g. for chaining                                                                                  
 *       replication), and                                                                                                                                              
 *   (3) A list of blocks dropped as a result of this put. This is always empty for DiskStore.                                                                          
 */                                                                                                                                                                     
private[spark] case class PutResult(                                                                                                                                    
    size: Long,                                                                                                                                                         
    data: Either[Iterator[_], ByteBuffer],                                                                                                                              
    droppedBlocks: Seq[(BlockId, BlockStatus)] = Seq.empty)  

BlockManagerMessages

定义了BlockManager之间的message交互

BlockManager

/**                                                                                                                                                                     
 * Manager running on every node (driver and executors) which provides interfaces for putting and                                                                       
 * retrieving blocks both locally and remotely into various stores (memory, disk, and off-heap).                                                                        
 *                                                                                                                                                                      
 * Note that #initialize() must be called before the BlockManager is usable.                                                                                            
 */                                                                                                                                                                     
private[spark] class BlockManager(  

这个是一个蛮长的文件,在这个文件中,定义了BlockManager,目前的实现中它是sparkEnv的一个memeber。

BlockManagerMasterActor

/**                                                                                                                                                                     
 * BlockManagerMasterActor is an actor on the master node to track statuses of                                                                                          
 * all slaves' block managers.                                                                                                                                          
 */                                                                                                                                                                     
private[spark]                                                                                                                                                          
class BlockManagerMasterActor(val isLocal: Boolean, conf: SparkConf, listenerBus: LiveListenerBus)                                                                      
  extends Actor with ActorLogReceive with Logging {                   

它的核心就是一系列的HashMap

  // Mapping from block manager id to the block manager's information.                                                                                                  
  private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo]                                                                                  

  // Mapping from executor ID to block manager ID.                                                                                                                      
  private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId]                                                                                    

  // Mapping from block id to the set of block managers that have the block.                                                                                            
  private val blockLocations = new JHashMap[BlockId, mutable.HashSet[BlockManagerId]]                                                                                   

BlockManagerSlaveActor

/**                                                                                                                                                                     
 * An actor to take commands from the master to execute options. For example,                                                                                           
 * this is used to remove blocks from the slave's BlockManager.                                                                                                         
 */                                                                                                                                                                     
private[storage]                                                                                                                                                        
class BlockManagerSlaveActor(                                                                                                                                           
    blockManager: BlockManager,                                                                                                                                         
    mapOutputTracker: MapOutputTracker)                                                                                                                                 
  extends Actor with ActorLogReceive with Logging { 

slave 就比较简单了,基本上就是异步的执行一些操作就可以了。

ShuffleBlockFetcherIterator

/**                                                                                                                                                                     
 * An iterator that fetches multiple blocks. For local blocks, it fetches from the local block                                                                          
 * manager. For remote blocks, it fetches them using the provided BlockTransferService.                                                                                 
 *                                                                                                                                                                      
 * This creates an iterator of (BlockID, values) tuples so the caller can handle blocks in a                                                                            
 * pipelined fashion as they are received.                                                                                                                              
 *                                                                                                                                                                      
 * The implementation throttles the remote fetches to they don't exceed maxBytesInFlight to avoid                                                                       
 * using too much memory.                                                                                                                                               
 *                                                                                                                                                                      
 * @param context [[TaskContext]], used for metrics update                                                                                                              
 * @param shuffleClient [[ShuffleClient]] for fetching remote blocks                                                                                                    
 * @param blockManager [[BlockManager]] for reading local blocks                                                                                                        
 * @param blocksByAddress list of blocks to fetch grouped by the [[BlockManagerId]].                                                                                    
 *                        For each block we also require the size (in bytes as a long field) in                                                                         
 *                        order to throttle the memory usage.                                                                                                           
 * @param serializer serializer used to deserialize the data.                                                                                                           
 * @param maxBytesInFlight max size (in bytes) of remote blocks to fetch at any given point.                                                                            
 */   
private[spark]                                                                                                                                                          
final class ShuffleBlockFetcherIterator(                                                                                                                                
    context: TaskContext,                                                                                                                                               
    shuffleClient: ShuffleClient,                                                                                                                                       
    blockManager: BlockManager,                                                                                                                                         
    blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])],                                                                                                       
    serializer: Serializer,                                                                                                                                             
    maxBytesInFlight: Long)                                                                                                                                             
  extends Iterator[(BlockId, Try[Iterator[Any]])] with Logging {        

介绍在Scala 中怎样使用一种函数式的方式来处理数据交互,包括入参及返回值。
Option: 解决null(空指针)问题
Either: 解决返回值不确定(返回两个值的其中一个)问题
Try: 解决函数可能会抛出异常问题

基本逻辑:
1. 分清楚local和remote节点的block
2. 向remote节点发送request
3. 在等待结果的过程中取local的block

BlockManagerMaster

通过driverActor控制blockManager

BlockStore

/**                                                                                                                                                                     
 * Abstract class to store blocks.                                                                                                                                      
 */                                                                                                                                                                     
private[spark] abstract class BlockStore(val blockManager: BlockManager) extends Logging {    

在BlockStore的基础上会有各种各样的store来具体负责各种资源的store。

MemoryStore

/**                                                                                                                                                                     
 * Stores blocks in memory, either as Arrays of deserialized Java objects or as                                                                                         
 * serialized ByteBuffers.                                                                                                                                              
 */                                                                                                                                                                     
private[spark] class MemoryStore(blockManager: BlockManager, maxMemory: Long)                                                                                           
  extends BlockStore(blockManager) {                     

MemoryStore可以缓存两种东西:
1. 一个btye流,需要copy
2. Array[any],直接缓存指针

内部实际上是个HashMap,用来缓存data;注意目前实现是有锁的。
1. 在entries上面的锁。
有两类接口:get/put

get
  1. override def getSize(blockId: BlockId): Long = {
  2. override def getBytes(blockId: BlockId): Option[ByteBuffer] = {
  3. override def getValues(blockId: BlockId): Option[Iterator[Any]] = {
put
  1. override def putBytes(blockId: BlockId, _bytes: ByteBuffer, level: StorageLevel): PutResult = {
  2. override def putArray(
  3. override def putIterator(

关于put的基本逻辑是:
1. 首先检测空间是不是够
- 够,缓存之
- 不够,试着释放空间
2. 被释放的空间和不能被放在memoryStore中的block会被尝试写入DiskStore

另外还有一些诸如clear,remove之类的

DiskStore

DiskBlockManager
/**                                                                                                                                                                     
 * Creates and maintains the logical mapping between logical blocks and physical on-disk                                                                                
 * locations. By default, one block is mapped to one file with a name given by its BlockId.                                                                             
 * However, it is also possible to have a block map to only a segment of a file, by calling                                                                             
 * mapBlockToFileSegment().                                                                                                                                             
 *                                                                                                                                                                      
 * Block files are hashed among the directories listed in spark.local.dir (or in                                                                                        
 * SPARK_LOCAL_DIRS, if it's set).                                                                                                                                      
 */                                                                                                                                                                     
private[spark] class DiskBlockManager(blockManager: BlockManager, conf: SparkConf)                                                                                      
  extends Logging {        

一个mapping罢了,注意这里的disk指的是本地磁盘不是HDFS,stop的时候直接rm掉数据就可以了。

实际上DiskStore比MemoryStore还要再简单一些:
1. 都是byte流,不用像MemoryDisk一样区分Any和byte
2. 对于byte流,如果长度小就直接都读上来,否者用channel.map

TachyonStore

/**                                                                                                                                                                     
 * Stores BlockManager blocks on Tachyon.                                                                                                                               
 */                                                                                                                                                                     
private[spark] class TachyonStore(                                                                                                                                      
    blockManager: BlockManager,                                                                                                                                         
    tachyonManager: TachyonBlockManager)                                                                                                                                
  extends BlockStore(blockManager: BlockManager) with Logging {      

比较像diskStore,在Tachyon的API上做了封装。

BlockManager

/**                                                                                                                                                                     
 * Manager running on every node (driver and executors) which provides interfaces for putting and                                                                       
 * retrieving blocks both locally and remotely into various stores (memory, disk, and off-heap).                                                                        
 *                                                                                                                                                                      
 * Note that #initialize() must be called before the BlockManager is usable.                                                                                            
 */                                                                                                                                                                     
private[spark] class BlockManager(                                                                                                                                      
    executorId: String,                                                                                                                                                 
    actorSystem: ActorSystem,                                                                                                                                           
    val master: BlockManagerMaster,                                                                                                                                     
    defaultSerializer: Serializer,                                                                                                                                      
    maxMemory: Long,                                                                                                                                                    
    val conf: SparkConf,                                                                                                                                                
    mapOutputTracker: MapOutputTracker,                                                                                                                                 
    shuffleManager: ShuffleManager,                                                                                                                                     
    blockTransferService: BlockTransferService,                                                                                                                         
    securityManager: SecurityManager,                                                                                                                                   
    numUsableCores: Int)                                                                                                                                                
  extends BlockDataManager with Logging {      

基本上BlockManager就是上面提到的所有东西的集合,如果能看懂上面那堆参数,那么你就比我强了。

本地拿block的逻辑

  1. 看有没有这么一个block
  2. 看MemoryStore里有没有
  3. 看TachyonStore里有没有
  4. 看DiskStore里有没有

DoPut

和DoGet几乎类似的逻辑

Replicate

  /**                                                                                                                                                                   
   * Replicate block to another node. Not that this is a blocking call that returns after                                                                               
   * the block has been replicated.                                                                                                                                     
   */                                                                                                                                                                   
  private def replicate(blockId: BlockId, data: ByteBuffer, level: StorageLevel): Unit = {   
"C:\Program Files\Java\jdk1.8.0_281\bin\java.exe" "-javaagent:D:\新建文件夹 (2)\IDEA\idea\IntelliJ IDEA 2019.3.3\lib\idea_rt.jar=59342" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_281\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\rt.jar;D:\carspark\out\production\carspark;C:\Users\wyatt\.ivy2\cache\org.scala-lang\scala-library\jars\scala-library-2.12.10.jar;C:\Users\wyatt\.ivy2\cache\org.scala-lang\scala-reflect\jars\scala-reflect-2.12.10.jar;C:\Users\wyatt\.ivy2\cache\org.scala-lang\scala-library\srcs\scala-library-2.12.10-sources.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\accessors-smart-1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\activation-1.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\aircompressor-0.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\algebra_2.12-2.0.0-M2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\antlr-runtime-3.5.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\antlr4-runtime-4.8-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\aopalliance-1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\aopalliance-repackaged-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arpack_combined_all-0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-format-2.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-memory-core-2.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-memory-netty-2.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\audience-annotations-0.5.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\automaton-1.11-8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\avro-1.8.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\avro-ipc-1.8.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\avro-mapred-1.8.2-hadoop2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\bonecp-0.8.0.RELEASE.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\breeze-macros_2.12-1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\breeze_2.12-1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\cats-kernel_2.12-2.0.0-M4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\chill-java-0.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\chill_2.12-0.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-beanutils-1.9.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-cli-1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-codec-1.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-collections-3.2.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-compiler-3.0.16.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-compress-1.20.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-configuration2-2.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-crypto-1.1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-daemon-1.0.13.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-dbcp-1.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-httpclient-3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-io-2.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-lang-2.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-lang3-3.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-logging-1.1.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-math3-3.4.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-net-3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-pool-1.5.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-text-1.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\compress-lzf-1.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\core-1.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\curator-client-2.13.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\curator-framework-2.13.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\curator-recipes-2.13.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\datanucleus-api-jdo-4.2.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\datanucleus-core-4.1.17.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\datanucleus-rdbms-4.1.19.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\derby-10.12.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\dnsjava-2.1.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\dropwizard-metrics-hadoop-metrics2-reporter-0.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\ehcache-3.3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\flatbuffers-java-1.9.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\generex-1.0.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\geronimo-jcache_1.0_spec-1.0-alpha-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\gson-2.2.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\guava-14.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\guice-4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\guice-servlet-4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-annotations-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-auth-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-hdfs-client-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-mapreduce-client-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-mapreduce-client-core-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-mapreduce-client-jobclient-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-api-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-client-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-registry-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-server-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-server-web-proxy-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\HikariCP-2.5.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-beeline-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-cli-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-common-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-exec-2.3.7-core.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-jdbc-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-llap-common-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-metastore-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-serde-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-service-rpc-3.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-shims-0.23-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-shims-common-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-shims-scheduler-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-storage-api-2.7.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-vector-code-gen-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hk2-api-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hk2-locator-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hk2-utils-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\htrace-core4-4.1.0-incubating.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\httpclient-4.5.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\httpcore-4.4.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\istack-commons-runtime-3.0.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\ivy-2.4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-annotations-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-core-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-core-asl-1.9.13.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-databind-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-dataformat-yaml-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-datatype-jsr310-2.11.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-jaxrs-base-2.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-jaxrs-json-provider-2.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-mapper-asl-1.9.13.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-module-jaxb-annotations-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-module-paranamer-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-module-scala_2.12-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.activation-api-1.2.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.annotation-api-1.3.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.inject-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.servlet-api-4.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.validation-api-2.0.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.ws.rs-api-2.1.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.xml.bind-api-2.3.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\janino-3.0.16.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javassist-3.25.0-GA.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javax.inject-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javax.jdo-3.2.0-m3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javolution-5.5.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jaxb-api-2.2.11.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jaxb-runtime-2.3.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jcip-annotations-1.0-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jcl-over-slf4j-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jdo-api-3.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-client-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-common-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-container-servlet-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-container-servlet-core-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-hk2-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-media-jaxb-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-server-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\JLargeArrays-1.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jline-2.14.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\joda-time-2.10.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jodd-core-3.5.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jpam-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json-1.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json-smart-2.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-ast_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-core_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-jackson_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-scalap_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jsp-api-2.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jsr305-3.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jta-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\JTransforms-3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jul-to-slf4j-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-admin-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-client-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-common-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-core-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-crypto-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-identity-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-server-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-simplekdc-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-util-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-asn1-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-config-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-pkix-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-util-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-xdr-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kryo-shaded-4.0.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-client-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-admissionregistration-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-apiextensions-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-apps-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-autoscaling-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-batch-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-certificates-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-common-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-coordination-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-core-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-discovery-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-events-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-extensions-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-metrics-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-networking-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-policy-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-rbac-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-scheduling-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-settings-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-storageclass-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\leveldbjni-all-1.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\libfb303-0.9.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\libthrift-0.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\log4j-1.2.17.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\logging-interceptor-3.12.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\lz4-java-1.7.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\machinist_2.12-0.6.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\macro-compat_2.12-1.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\mesos-1.4.0-shaded-protobuf.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-core-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-graphite-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-jmx-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-json-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-jvm-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\minlog-1.3.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\netty-all-4.1.51.Final.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\nimbus-jose-jwt-4.41.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\objenesis-2.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\okhttp-2.7.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\okhttp-3.12.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\okio-1.14.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\opencsv-2.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\orc-core-1.5.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\orc-mapreduce-1.5.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\orc-shims-1.5.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\oro-2.0.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\osgi-resource-locator-1.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\paranamer-2.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-column-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-common-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-encoding-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-format-2.4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-hadoop-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-jackson-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\protobuf-java-2.5.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\py4j-0.10.9.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\pyrolite-4.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\re2j-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\RoaringBitmap-0.9.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-collection-compat_2.12-2.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-compiler-2.12.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-library-2.12.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-parser-combinators_2.12-1.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-reflect-2.12.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-xml_2.12-1.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\shapeless_2.12-2.3.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\shims-0.9.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\slf4j-api-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\slf4j-log4j12-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\snakeyaml-1.24.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\snappy-java-1.1.8.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-catalyst_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-core_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-graphx_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-hive-thriftserver_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-hive_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-kubernetes_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-kvstore_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-launcher_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-mesos_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-mllib-local_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-mllib_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-network-common_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-network-shuffle_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-repl_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-sketch_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-sql_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-streaming_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-tags_2.12-3.1.1-tests.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-tags_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-unsafe_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-yarn_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire-macros_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire-platform_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire-util_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\ST4-4.0.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\stax-api-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\stax2-api-3.1.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\stream-2.9.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\super-csv-2.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\threeten-extra-1.5.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\token-provider-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\transaction-api-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\univocity-parsers-2.9.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\velocity-1.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\woodstox-core-5.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\xbean-asm7-shaded-4.15.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\xz-1.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\zjsonpatch-0.3.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\zookeeper-3.4.14.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\zstd-jni-1.4.8-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-vector-2.0.0.jar" car.LoadModelRideHailing Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties 25/06/08 17:05:07 INFO SparkContext: Running Spark version 3.1.1 25/06/08 17:05:07 INFO ResourceUtils: ============================================================== 25/06/08 17:05:07 INFO ResourceUtils: No custom resources configured for spark.driver. 25/06/08 17:05:07 INFO ResourceUtils: ============================================================== 25/06/08 17:05:07 INFO SparkContext: Submitted application: LoadModelRideHailing 25/06/08 17:05:07 INFO ResourceProfile: Default ResourceProfile created, executor resources: Map(cores -> name: cores, amount: 1, script: , vendor: , memory -> name: memory, amount: 1024, script: , vendor: , offHeap -> name: offHeap, amount: 0, script: , vendor: ), task resources: Map(cpus -> name: cpus, amount: 1.0) 25/06/08 17:05:07 INFO ResourceProfile: Limiting resource is cpu 25/06/08 17:05:07 INFO ResourceProfileManager: Added ResourceProfile id: 0 25/06/08 17:05:07 INFO SecurityManager: Changing view acls to: wyatt 25/06/08 17:05:07 INFO SecurityManager: Changing modify acls to: wyatt 25/06/08 17:05:07 INFO SecurityManager: Changing view acls groups to: 25/06/08 17:05:07 INFO SecurityManager: Changing modify acls groups to: 25/06/08 17:05:07 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(wyatt); groups with view permissions: Set(); users with modify permissions: Set(wyatt); groups with modify permissions: Set() 25/06/08 17:05:07 INFO Utils: Successfully started service 'sparkDriver' on port 59361. 25/06/08 17:05:07 INFO SparkEnv: Registering MapOutputTracker 25/06/08 17:05:07 INFO SparkEnv: Registering BlockManagerMaster 25/06/08 17:05:08 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 25/06/08 17:05:08 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 25/06/08 17:05:08 INFO SparkEnv: Registering BlockManagerMasterHeartbeat 25/06/08 17:05:08 INFO DiskBlockManager: Created local directory at C:\Users\wyatt\AppData\Local\Temp\blockmgr-8fe065e2-024c-4e2f-8662-45d2fe3de444 25/06/08 17:05:08 INFO MemoryStore: MemoryStore started with capacity 1899.0 MiB 25/06/08 17:05:08 INFO SparkEnv: Registering OutputCommitCoordinator 25/06/08 17:05:08 INFO Utils: Successfully started service 'SparkUI' on port 4040. 25/06/08 17:05:08 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://windows10.microdone.cn:4040 25/06/08 17:05:08 INFO Executor: Starting executor ID driver on host windows10.microdone.cn 25/06/08 17:05:08 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 59392. 25/06/08 17:05:08 INFO NettyBlockTransferService: Server created on windows10.microdone.cn:59392 25/06/08 17:05:08 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 25/06/08 17:05:08 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, windows10.microdone.cn, 59392, None) 25/06/08 17:05:08 INFO BlockManagerMasterEndpoint: Registering block manager windows10.microdone.cn:59392 with 1899.0 MiB RAM, BlockManagerId(driver, windows10.microdone.cn, 59392, None) 25/06/08 17:05:08 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, windows10.microdone.cn, 59392, None) 25/06/08 17:05:08 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, windows10.microdone.cn, 59392, None) Exception in thread "main" java.lang.IllegalArgumentException: 测试数据中不包含 features 列,请检查数据! at car.LoadModelRideHailing$.main(LoadModelRideHailing.scala:23) at car.LoadModelRideHailing.main(LoadModelRideHailing.scala) 进程已结束,退出代码为 1 package car import org.apache.spark.ml.classification.{LogisticRegressionModel, RandomForestClassificationModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.sql.{SparkSession, functions => F} object LoadModelRideHailing { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[3]") .appName("LoadModelRideHailing") .getOrCreate() spark.sparkContext.setLogLevel("Error") // 使用经过特征工程处理后的测试数据 val TestData = spark.read.option("header", "true").csv("C:\\Users\\wyatt\\Documents\\ride_hailing_test_data.csv") // 将 label 列转换为数值类型 val testDataWithNumericLabel = TestData.withColumn("label", F.col("label").cast("double")) // 检查 features 列是否存在 if (!testDataWithNumericLabel.columns.contains("features")) { throw new IllegalArgumentException("测试数据中不包含 features 列,请检查数据!") } // 修正后的模型路径(确保文件夹存在且包含元数据) val LogisticModel = LogisticRegressionModel.load("C:\\Users\\wyatt\\Documents\\ride_hailing_logistic_model") // 示例路径 val LogisticPre = LogisticModel.transform(testDataWithNumericLabel) val LogisticAcc = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") .evaluate(LogisticPre) println("逻辑回归模型后期数据准确率:" + LogisticAcc) // 随机森林模型路径同步修正 val RandomForest = RandomForestClassificationModel.load("C:\\Users\\wyatt\\Documents\\ride_hailing_random_forest_model") // 示例路径 val RandomForestPre = RandomForest.transform(testDataWithNumericLabel) val RandomForestAcc = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") .evaluate(RandomForestPre) println("随机森林模型后期数据准确率:" + RandomForestAcc) spark.stop() } }
最新发布
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值